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THE FAST m-TRANSFORM: A FAST COMPUTATION OF
CROSS-CORRELATIONS WITH BINARY m-SEQUENCES*

ERICH E. SUTTER

Abstract. An algorithm is presented for the fast computation of the m-transform, a Hadamard transform
intimately related to cross-correlation of analog signals with binary m-sequences. It is shown that m-
transforms are in the same Hadamard equivalence class as Walsh-Hadamard transforms and can, thus, be
computed by means of the Fast Walsh Transform (FWT) algorithm, preceded and followed by a permutation.
The FWT is performed in place in the original data array, while the permutations are executed during
loading and reading of this array. Real-time generation of the array addresses for loading and reading adds
little to execution time of the FWT. The implementation described here lends itself particularly well to

applications in linear and nonlinear systems analysis.

Key words, fast cross-correlation, Hadamard transforms, m-sequences, nonlinear systems analysis,
Walsh-Hadamard transforms
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Introduction. The first theoretical work on binary m-sequences was published by
Zierler in 1959 [1]. During the following decades their properties were extensively
studied [2]. Researchers soon found applications in the fields of systems analysis and
identification. The ease and speed with which these pseudorandom sequences could
be generated made them very attractive in situations where random white processes
are called for. In one of the first such applications, Briggs et al. [3] used them for a
linear correlation analysis of process dynamics. Subsequently, numerous applications
in nonlinear systems analysis were explored [4], [5], [6]. It was discovered, however,
that the randomness properties of m-sequences, as exhibited in higher order auto-
correlation functions, are not adequate for emulation of truly random sequences [6],
[7], [8]. Detailed studies of their auto-correlation properties [9] ultimately discredited
binary m-sequences as test inputs for stochastic white noise of nonlinear systems. The
recent introduction of a deterministic technique 10], however, renewed interest in the
application of binary m-sequences to systems analysis problems. In this new approach,
the derivation of the binary kernels of all orders is reduced to a single cross-correlation
of the binary m-sequence test input and the corresponding output. It is necessary,
however, that the test extend over a long, complete m-sequence cycle, and that the
entire cross-correlation cycle be computed. Because of the often very large size of the
arrays, selection of the right algorithm can be very important. Traditionally, such cases
called for application of the convolution theorem, requiring execution of three Fast
Fourier Transforms (FFTs). In this case, however, where one of the arrays is a binary
sequence of a specific class, a much faster computational technique is possible. As
shown below, the computation can be reduced to a single Fast Walsh Transform (FWT).

1. Background.
1.1. Hadamard bases and Walsh-Hadamard transforms. A Hadamard matrix is an

orthogonal rn rn matrix whose elements are binary (+1,-1). The linear transform
mediated by the Hadamard matrix is called a Hadamard transform. Orthogonality
requires that the dimensionality be even. The rows or columns of the matrix are
orthogonal binary vectors in an m-dimensional vector space.

(I) HHT= HTH m. I.
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FAST m-TRANSFORM 687

Clearly, multiplication with -1 and permutations of rows and columns cannot
affect this property. Any two Hadamard matrices H1 and H2 are said to be equivalent
if

(2) n- PYHIPc,
where Pc and Pr are permutation matrices for columns and rows, respectively.

The existence of different equivalence classes has been demonstrated by Hall 11
for the special cases m 16 and m 20.

Of special interest here are Hadamard matrices of order 2". For each m 2" there
exists at least one equivalence class that contains the different representations of the
Walsh transform matrix. The Walsh matrices can be defined in various ways leading
to different orderings of the Walsh vectors (see, e.g., [12]). The representation con-
sidered here is called natural, or Hadamard, ordering. It is achieved by means of a

pair of binary registers of length n. These registers, C and R, contain the binary
representation of the row number r and column number c, respectively. Let ri and ci
be the digits of the binary registers C and R, respectively. The Walsh matrix is then
given by

.--1

(3) W(c, r)= (-1)qc’r) where q(c, r)= Y. rici.
i=0

Each matrix element is thus defined as the parity of the bitwise logic AND between
a register r, containing its row number, and a register c, containing the column number.

Example. n 3.
Matrix element W5,6:

(4)
row r=5" {ri}-(101) AND(OO1)-parity- W(5,6)=-1.
column c 6: { ci} - (110) J

The entire matrix is

c 0 1 2 3 4 5 6 7

0 + + + + + + + + fro
1 + -+- + + I’
2 + + + -1-

3 + + + + if3
4 + + -’1- +
5 + + + +
6 + -}- -’1- + 16

7 + + + +
All other Walsh-Hadamard matrix representations of the same order are obtained

by permutation of the row and column numbers, and are, thus, in the same equivalence
class according to equivalence relation (2)"
(6) W’(c, r)= W(p2(c), pl(r)),

where pl and P2 are permutation operators.
The Walsh-Hadamard transform, in its natural ordering as defined by (3), can be

computed by a simple Fast Walsh Transform (FWT) algorithm [13]. Similar fast
algorithms have been developed for various other orderings [12]. According to (2),
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688 ERICH E. SUTTER

any other transform of this equivalence class can be computed by means of the same
algorithm preceded and followed by a permutation matrix. Techniques of transforma-
tion from one ordering to another have also been developed [14].

1.2. Binary m-sequences. Binary m-sequences, also called maximal length shift
register sequences, can be generated by means of digital shift registers with feedback,
as shown in Fig. 1 [2]. The content of a certain set of register stages is summed modulo
2 and fed back into the input.

n 3 2 1

FIG.

With properly chosen feedback taps, the register cycles through all possible
configurations, except for the all-zero configuration, which is a cycle in itself. For the
larger of the two cycles, the binary sequence of O’s and l’s generated by the output of
the register is called a maximal length shift register sequence or binary m-sequence.
It follows immediately that:

(1) m-sequences have a period of 2"-1, where n is the number of stages in the
generating register.

(2) The number of l’s exceeds the number of O’s by exactly one, i.e.,
2n--1

(7) 2 ai=2"-1

i=0

These sequences have been extensively studied [1], [2], [6], [9].
Let A1 ={al, a2, a3,’" "} be a binary m-sequence with period 2"-1 and Ai

{ai, a+l, a+2, "} be the sequence in all its cyclical shifts. Let Ao {0, 0, 0,. -}.

Ao 0 0 0 0

A1 al a2 a3 aN

A. a. a3 a4 al

(8) A3 a3 a4 a5 a where N 2" 1.

AN aN-1 aN-1

The sequences Ao, At, Az,’’’, Ap form an Abelian group with respect to the
operation of elementwise addition modulo 2. Specifically

(9) A+Ao=A, Ai+A=Ao for anyi and A+Aj=Ak(,j fori#j#0.
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FAST m-TRANSFORM 689

The proof follows directly from the recurrence relation defined by Fig. 1 (see [2, p. 44]).

2. Binary m-transform.
DEFINITION. Let {Mi} be the set of sequences obtained from the sequences {Ai}

by replacing all the O’s by l’s and the l’s by -l’s, and adding a zeroth element of 1
to each A.

Mo 1 1 1 1 1 1

M1 1 ml m2 mN

M2 1 m2 m3 ml

(10) M= M m m4 m2 N=2n-1.

MN mN ml mN-

The transform defined by matrix (10) will be called m-transform.
Through the substitution 0 1, 1 - -1, the operation of addition modulo 2 becomes

multiplication:

0 1 1 -1
0 1

(11) 0 0 1 1 1 -1.
1--1

1 1 0 -1 -1 1

With the completion of the rows with a zeroth element of 1, the zero cycle is included
in each row. With it, the matrix becomes symmetrical. From (7) and (9) it follows that
the rows Mr form an orthogonal basis

(12) Mr" Ms
for iS k,

and that M is a symmetric orthogonal matrix

(13) MTM MM 2n. I where I is the identity.

With the above substitution, the rows Mr now form an Abelian group with respect
to elementwise multiplication.

As a binary orthogonal matrix, M is a Hadamard matrix.
Note that the cross-correlation of a data array of 2 1 real numbers with a binary

m-sequence (elements +1 and -1) is the sequence of elements 1 to 2n-1 of the
m-transform if the data array is supplemented with a zeroth element of 0.

TEOREM. All Walsh and m-transform matrices of dimension 2 are in the same
equivalence class of Hadamard matrices.

Proof Each row Mr of the matrix M can be obtained as the parity of a particular
collection of taps tr on its n stages during a single cycle through the configurations of
the generating register. This can be seen as follows. For the first n rows, tr is just a
single tap on the rth stage. For row Mn+, a single tap on stage n + 1 would be needed.
According to Fig. 1, this tap is equivalent to the configuration tn+ of the feedback
taps (see Fig. 2).

For M,+2, Mn+3, ", the feedback taps have to be shifted left one stage each time.
Whenever a tap is shifted off the left end of the register, it is replaced by the feedback
tap configuration. If, in this process, a new tap coincides with an already existing tap,
this tap position contributes even parity and can, thus, be dropped.
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690 ERICH E. SUTTER

parity
Mn+l

FIG. 2

The generation of the tap configurations tr derived above can be implemented in
a separate shift register of the same length n. It will be called tap register T. The l’s
in this register signify the position of taps. The tap register is initialized with a
right-justified 1 for the first row and shifted left for consecutive rows. The output of
the register is added (modulo 2) to the stages where the generating register has its
feedback taps (see top of Fig. 3).

The tap configurations sequentially generated by this method will produce consecu-
tive rows of the matrix M. Similarly, for a fixed configuration of the generating register,
the set of all tap configurations yields a column. With each shift of the generating
register, a new column is generated.

So, to get to the matrix element Me, the tap and generating registers are advanced
by (c-1) and (r-1) steps, respectively. Mc, is then the parity of the bitwise logic
AND (tap operation) of the two registers. For the generation of the zeroth row (zeroth
column), the column (row) register is initialized with all O’s.

Note that a row generated by a collection tr of taps is simply the bitwise product
of all the rows generated by the individual taps in the collection. It follows that the
Abelian group of rows is generated by rows M1 through M, in the same way as the
Walsh basis is generated by the Rademacher functions [15].

This derivation of the m-transform matrix serves as another definition of the
m-transform in terms of the generating and tap registers.

n-1

(14) M(r, c)= (--1) q(r’c) where q(r, c)= E t,(r)gi(c),
i=0

where gi(c) and ti(r) are cth and rth bit configurations generated by the registers G
and T, respectively, and gi(0)= ti(O)--O. For the generation of the nontrivial cycle, the
registers G and T can be initialized with any binary number not equal to 0, depending
on the chosen starting point of the m-sequence. In applications to deterministic
nonlinear analysis, the register T takes on a special function that determines the
initialization 10].

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FAST m-TRANSFORM 691

Tap Register T

n 3 2

Generating Register G

FIG. 3

This derivation of the matrix M matches the definition of the natural Walsh
transform matrix W (3), except in the sequence in which the 2n- 1 register configur-
ations are being generated. It, thus, follows that

(15) M(r, c)= W(t(r), g(c)),

i.e., m-transforms and Walsh transforms belong to the same equivalence class of
Hadamard transforms.

2.1. Fast computation of m-transforms. The equivalence between Walsh and m-
transforms makes it possible to compute m-transforms by means of the Fast Walsh
Transform (FWT) algorithm using natural (Hadamard) ordering. The permutations
r-> g(r) and c -> t(c) preceding and following the FWT do not add significantly to the
computation times. This section discusses efficient execution of these permutations.

In matrix notation, (15) can be written as

(16) M er_ tWeg__,c,
where Pc-g is the permutation matrix c-+ g(c) defined by the generating register, and
Pr-,t is the permutation matrix r-> t(r) defined by the tap register.

From the symmetry of the matrices M and W, it follows that

(17) MT PLWTpr-,, PgWPr, M,
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692 ERICH E. SUTTER

i.e., the roles of the tap and generating registers can be interchanged. The sequence
of operations chosen here has important advantages in applications to nonlinear systems
analysis 10].

Fig. 4 illustrates the relationship between the registers and matrices for the case
n=3.

The permutation Peg is equivalent to loading data point number c at the cth
binary array address generated by register G. The permutation Pr_t, after execution
of FWT, is equivalent to reading point number r of the m-transform from the rth
binary array address generated by the tap register T.

It is, of course, possible to compute the two address arrays for a particular
m-transform ahead of time. However, the generation of the addresses is considerably
faster than loading from a conventional storage medium, particularly if the instruction
set of processors contains the register operation of bitwise exclusive OR (EXOR).
Consecutive configurations ofthe register T (addresses for retrieval ofthe m-transform)
can be generated at high speed using the following simple operations. (1) Shift register
T left by one. (2) If bit n+l of register T is set, then T= T EXOR C, where the
register C contains l’s bit position (n + 1), as well as the position of feedback taps
and O’s everywhere else.

Since each bit of register T cycles through the m-sequence, the same code can be
used to generate consecutive addresses for loading of the data points. The output of
T is simply shifted from the left through the n least significant bit positions of another
register G.

3. Discussion and conclusions. Among the Hadamard sets, the m-sequence bases
are unique in that they share the following two important properties. First, all m-
sequence basis vectors are related to one another by cyclical shifts of the elements 1
through 2n- 1. Second, the basis vectors form an Abelian group with respect to
elementwise multiplication. These properties make them extremely valuable as test
inputs for the analysis of nonlinear systems. They make it possible to reduce the data
analysis to a single cross-correlation between the system response and the m-sequence
input [10]. Since these two arrays can be very large, efficient computation of the
cross-correlation cycle is of great importance. The technique presented here reduces
the computation to a single Fast Walsh Transform that is performed in-place. The
reduction in computation time, compared to the traditional method employing FFTs
and the convolution theorem, is considerable. Three FFTs and an array multiplication
are replaced by a single Fast Walsh Transform (FWT) preceded and followed by
simple and highly efficient routines for loading and unloading of the data array. The
loading and unloading routines require little or no overhead, depending on the
application. The FWT algorithm is basically an abbreviated FFT, requiring no sine
table and no multiplications. An exact quantitative measure of the speed advantage
of the FWT over the FFT cannot be given, since it depends on the available hardware.
In most cases, it can easily be implemented in integer, rather than floating point format
without loss of accuracy. In a test on a Macintosh II computer using the 68081 math
co-processor, the FWT was faster than a real FFT by a factor of six. Both transforms
used in the comparison were based on the Cooley-Tukey algorithm. Since the computa-
tion of the cross-correlation cycle requires only one FWT, one can expect an overall
speed advantage of a factor between 15 and 30. On systems without hardware multiplier,
the savings are significantly larger.

Consider also that the Fast m-transform makes use of the fact that the m-sequence
is completely determined by the length of the generating register and the configuration
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FAST m-TRANSFORM 693

Tap Register T Generating Register G

r tt (r) t

0 ---> 000 ---> 0

001 --2 010 2
3 -- 100 -- 4
4 011 3
5 110 ---) 6
6 111 7
7 -- 101 5

zero cycle

m-sequence cycle

c gt ic) g

0 000 - 0

1 001 -- 1
2 100 4
3 010 -- 2
4 -- 101 5
5 110 6
6 111 -- 7
7---- 011 --> 3

10000000
01000000
00100000
00001000
00010000
00000010
00000001
00000100

+ + + + + + + +
+ + 4- 4-

+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

[w’r]

10000000
01000000
00010000
00000001
00100000
00001000
00000100
00000010

+ + + + + + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + +
+ + + +

FIG. 4

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



694 ERICH E. SUTTER

of the feedback taps. No memory allocation is necessary for storage of the m-sequence.
This greatly facilitates implementation of the cross-correlation of large arrays on
microcomputers.

REFERENCES

[1] N. ZIERLER, Linear recurring sequences, J. Soc. Indust. Appl. Math., 7 (1959), pp. 31-49.
[2] S. W. GOLOMB, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, 1982.
[3] P. A. N. BRIGGS, P. H. HAMMOND, M. T. G. HUGHES, AND G. O. PLUMB, Correlation analysis of

process dynamics using pseudo-random binary test perturbations, Proc. Inst. Mech. Engrg., 179
(1964-65), pp. 37-50.

[4] E. P. GYFTOPOULOS AND R. J. HOOPER, Signals for transfer-function measurements in nonlinear
systems, in Noise and Nuclear Systems, USAEC Symposium Series 4, TID-7679, United States
Atomic Energy Commission, 1964, pp. 335-345.

[5] R. J. HOOPER AND E. P. GYFTOPOULOS, On the measurement of characteristic kernels of a class of
nonlinear systems, in Neutron Noise, Waves and Pulse Propagation, USAEC Conference Report
660206, United States Atomic Energy Commission, 1967, pp. 343-356.

[6] H. R. SIMPSON, Statistical properties of a class ofpseudorandom sequences, Proc. lEE-E, 103 (1966),
pp. 2075-2080.

[7] N. REAM, Nonlinear identification using inverse-repeat m-sequences, Proc. lEE-E, 117 (1966), pp. 213-
218.

[8] C. SWERUP, On the choice of noise for the analysis of the peripheral auditory system, Biol. Cybernet.,
29 (1978), pp. 97-104.

[9] H. A. BARKER AND T. PRADISTHAYON, High-order autocorrelation functions ofpseudorandom signals
based on m-sequences, Proc. lEE-E, 117 (1970), pp. 1857-1863.

[10] E. E. SUTTER, A practical non-stochastic approach to nonlinear time-domain analysis, in Advanced
Methods of Physiological Systems Modelling, Vol. 1, Biomedical Simulations Resource, Department
of Biomedical Engineering, University of Southern California, Los Angeles, CA, 1987.

[11] M. HALL, JR., Hadamard matrices of order 16, Lett. Propuls. Lab. Res. M., Vol. 36-10, Jet Propulsion
Laboratory, Pasadena, CA, 1961, pp. 21-26.

12] D. F. ELLIOTT AND K. R. RAO, Fast Transforms: Algorithms, Analysis, Applications, Academic Press,
New York, 1982, p. 301.

[13] K. W. HENDERSON, Comment on Computation of the fast Walsh-Fourier transform, IEEE Trans.
Comput., 19 (1970), pp. 50-51.

[14] B. J. FNO AND V. R. ALGAZI, Unified matrix treatment of thefast Walsh-Hadamard transform, IEEE
Trans. Comput., 25 (1976), pp. 1142-1146.

15] H. RADEMACHER, Einige Siitze yon allgemeinen Orthogonalfunktionen, Math. Ann., 87 (1922), pp. 122-
138.

D
ow

nl
oa

de
d 

12
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


