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Abstract

Foreground-background segmentation has recently been applied [26,12] to the
detection and segmentation of specific objects or structures of interest from the
background as an efficient alternative to techniques such as deformable templates
[27]. We introduce a graphical model (i.e. Markov random field)-based formulation
of structure-specific figure-ground segmentation based on simple geometric features
extracted from an image, such as local configurations of linear features, that are
characteristic of the desired figure structure. Our formulation is novel in that it is
based on factor graphs, which are graphical models that encode interactions among
arbitrary numbers of random variables. The ability of factor graphs to express inter-
actions higher than pairwise order (the highest order encountered in most graphical
models used in computer vision) is useful for modeling a variety of pattern recog-
nition problems. In particular, we show how this property makes factor graphs
a natural framework for performing grouping and segmentation, and demonstrate
that the factor graph framework emerges naturally from a simple maximum entropy
model of figure-ground segmentation.

We cast our approach in a learning framework, in which the contributions of
multiple grouping cues are learned from training data, and apply our framework
to the problem of finding printed text in natural scenes. Experimental results are
described, including a performance analysis that demonstrates the feasibility of the
approach.
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1 Introduction

Originally proposed as a generic process for segmenting the foreground of a
scene from the background, figure-ground (foreground-background) segmen-
tation has recently been successfully applied [26,12] to the detection and seg-
mentation of specific objects or structures (i.e. targets) of interest from the
background. Standard techniques such as deformable templates [27] are poorly
suited to finding some targets, such as printed text, stripe patterns, vegetation
or buildings, particularly when the targets are regular (e.g. quasi-periodic) or
texture-like structures with widely varying extent, shape and scale.

In these cases it seems more appropriate to group target features into a com-
mon foreground class (at least as an initial segmentation step to precede fur-
ther processing), rather than directly attempt to find a detailed correspon-
dence between a prototype and the target in the image, as is typically done
with deformable template and shape matching techniques.

Our graphical model-based approach to figure-ground segmentation is an out-
growth of earlier work on figure-ground segmentation applied to finding cross-
walks in traffic intersections [5] and builds on more recent work in [19] and
[9]. The approach emphasizes the use of the geometric relationships of features
extracted from an image as a means of grouping the target features into the
foreground. In contrast with related MRF techniques [28] for classifying indi-
vidual image patches into small numbers of categories, our approach seeks to
make maximal use of geometric features extracted from images, rather than
raw pixel information. Geometric information is generally more intuitive to
understand than filter-based feature information, and it may also be more
appropriate when lighting conditions are highly variable.

We formulate our approach in the general case of figure-ground sementation
and apply it to the problem of finding printed text in natural scenes. Exper-
imental results are described, including a performance analysis that demon-
strates the feasibility of the approach.

2 Grouping with Factors

In this paper we describe the use of factor graphs as a natural framework
for grouping (i.e. segmenting) features in an image. Any grouping process
analyzes relationships among features in deciding how to group them; these
relationships are interactions among features that reflect their compatibility
for inclusion into the same group. In much past work on grouping and segmen-
tation, such as normalized cuts [22,26] and graphical-model based typical cuts
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[20] (all of which inspired our approach), these interactions are pairwise mea-
sures that measure the similarity (or affinity) of two features. Our approach
is similar to that of [20] in that it constructs a Markov random field with one
binary-valued (0 or 1) node variable for each feature to be grouped, and uses
belief propagation to decide how to group the features (two features are as-
signed to the same group if the probability that they are jointly assigned to the
same binary labels is above a threshold); however, their approach imposes a
fundamental symmetry between the two possible states of each node variable,
whereas in our approach the two possible states represent figure (state 1) or
ground (state 0), which are not symmetric. The object-specific figure-ground
technique in [26] imposes the same type of figure-ground asymmetry as our
work does, but their work was applied to specific targets such as telephones
and mugs and it is unclear how this technique would generalize to texture-like
patterns with highly variable numbers of elements.

The above techniques all use pairwise measures that measure the similarity
(or affinity) of two features. However, many clustering problems necessitate
the use of higher-order interactions; for instance, the problem of grouping
points on a 2-D plane into lines requires an interaction defined on triplets of
points, since every pair of points is trivially collinear. Some recent work [1]
has investigated hypergraph partitioning techniques for handling these higher-
order interactions.

Factor graphs [11] are graphical models designed to express interactions of any
order (generalizing the pairwise interactions often used in graphical models, i.e.
Markov random fields), and may be used for formulating simple and efficient
grouping algorithms. We apply this formulation to the problem of object-
specific figure-ground segmentation, which is how we cast the problem of text
detection.

In the next section we introduce factor graphs, and in subsequent sections
we describe how a particular functional form of factor graph appropriate
for figure-ground segmentation is suggested by a maximum entropy model
of grouping.

2.1 Factor Graphs

Factor graphs [11] are representations of probability distributions of many
variables that can be expressed as a product of several factors, where each
factor is an explicit interaction among a subset of these variables. (For a
comprehensive treatment of factor graphs, see Chapter 8 of [2], which can
be downloaded at http://research.microsoft.com/˜cmbishop/PRML/ .) Fig. 1
shows an example of a factor graph depicted in a graphical format. Each
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square node represents a factor, or interaction, among one or more variables,
depicted by circles, and the topology of the factor graph indicates how the
joint distribution of all variables factors.

Fig. 1. Factor graph. This graph represents a distribution on four variables w,x,y,z
(drawn as circles) using four factors f , g, h, i (drawn as squares). Edges connect
factors with the variables they influence. The joint distribution represented by this
factor graph is P (w, x, y, z) = f(w, x, y)g(x, y, z)h(w)i(y, z).

The arity of a factor is the number of variables that interact in the factor.
An arity-1 factor is called a unitary factor, and an arity-2 factor is some-
times referred to as a pairwise interaction. For the example shown in Fig. 1,
factor h is arity-1, factor i is arity-2 and factors f and g are arity-3. In our
figure-ground segmentation application, one factor arises from each constraint
(measurement), and its arity equals the number of features (nodes) included
in the measurement constraint.

The factor graph framework is an extremely general framework that is con-
venient for representing a large variety of probabilistic models. As we will see
in a later section, inference on factor graphs is made tractable by approxi-
mate techniques such as belief propagation, which we use in our text-finding
algorithm.

2.2 Theoretical Motivation: Maximum Entropy

In this section we discuss the theoretical motivation for the functional form
of the model we use for figure-ground segmentation, which is inspired from
a simple maximum entropy probability model. As we will see, this functional
form is naturally described using a factor graph.

The motivation for our maximum entropy model is that, given a collection
of features to be segmented into figure or ground, evidence for how to assign
(segment) features to figure or ground arises from considering relationships
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among two or more features. (Depending on the nature of the segmentation
task, there may also be evidence for individual features belonging to figure or
ground that is independent of other features.) The goal is to combine noisy
evidence pertaining to groups of features in such a way that we can decide the
likelihood that any individual feature should be assigned to figure or ground.
Our approach is to construct a joint probability distribution of the assignments
of all the features that is consistent with the evidence from groups of features.
The joint distribution is chosen to be the least biased distribution that is
consistent with the evidence; we enforce this “minimal-bias” criterion using a
maximum entropy approach [17].

We now present the details of our maximum entropy model of figure-ground
segmentation. We are given a collection of n features (i.e. nodes) in an image,
each of which has an unknown assignment to figure or ground, denoted by xi

for i = 1, 2, . . . , n, where xi = 0 represents assignment to the ground state
and xi = 1 represents assignment to the figure state. (Image data is also
associated with each feature, such as its pixel coordinates.) Certain subsets of
nodes are selected as candidates to be grouped into the figure, and we assume
that for each subset (with at least two nodes) there is a way to estimate the
probability that all nodes in the subset belong to the figure. Such a probability
measure is based on the image data associated with the features; for instance,
in the collinearity example in Section 2.4, the probability that a subset of
three feature points belongs to the figure would be a monotonically increasing
function of the degree of collinearity and proximity of the feature points.

We can regard the probability measure associated with each feature subset as a
measurement that constrains the joint distribution of all nodes given the mea-
surement data, which yields the posterior distribution P (x1, x2, . . . , xn|data).
(In this section, conditioning on “data” means that we are conditioning on
some or all such measurement data; in later sections we will use more precise
notation to refer to individual pieces of measurement data.) We can then show
that the form of P (x1, x2, . . . , xn|data) having the maximum entropy distri-
bution consistent with these constraints will be a product of multiple factors,
one factor corresponding to each constraint.

We demonstrate this fact with an illustrative example (see Fig. 2); it is
straightforward to extend the analysis to an arbitrary collection of features and
feature subsets. In this example there are four nodes, x1, x2, x3, x4, and two
subset constraints: P (x1 = 1, x2 = 1, x3 = 1|data) = p1 and P (x3 = 1, x4 =
1|data) = p2. The joint distribution we are seeking, P (x1, x2, x3, x4|data), has
entropy equal to −

∑

X P (X|data) log P (X|data), where X = (x1, x2, x3, x4).
The problem is a constrained optimization problem, and the solution can be
obtained using Lagrange multipliers:
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Fig. 2. Example of probability measure applied to subsets of features (i.e. candidate
groupings). Each feature (node) is depicted by a circle, labeled 1 through 4; the two
ovals depict candidate groupings of features. Values p1 and p2 denote the probability
that all the features within each oval belong to the figure.

Fig. 3. Recasting grouping example from Fig. 2 as a factor graph. The four fea-
tures have unknown states, denoted x1,x2,x3 and x4, each of which equals 0 or 1,
representing figure or ground, respectively. Factor f(x1, x2, x3) results from a mea-
surement applied to features 1, 2 and 3; factor g(x3, x4) results from a measurement
applied to features 3 and 4.

E =−
∑

X

P (X|data) log P (X|data)

+λ1(
∑

x4

P (x1 = 1, x2 = 1, x3 = 1, x4|data)− p1)

+λ2(
∑

x1,x2

P (x1, x2, x3 = 1, x4 = 1|data)− p2)

+τ(
∑

X

P (X|data)− 1) (1)

The Lagrange multipliers λ1 and λ2 enforce the two subset constraints, and τ
enforces the fact that P (X|data) is a normalized distribution. The expression
for ∂E/∂P (X|data) is:

∂E/∂P (X|data) = − log P (X|data)− 1 + λ1x1x2x3 + λ2x3x4 + τ (2)

where we notice that x1x2x3 = 1 only when x1 = 1, x2 = 1 and x3 = 1. If we
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set ∂E/∂P (X|data) = 0, then we get the following solution:

P (X|data) =
1

Z
eµ1x1x2x3eµ2x3x4 (3)

The key point to notice is that P (X|data) contains one factor (term) for
each constraint, which in this case we label as f(x1, x2, x3) = eµ1x1x2x3 and
g(x3, x4) = eµ2x3x4 . The values µ1 and µ2 are parameters that must be chosen
so that P (X|data) satisfies the two subset constraints (for details on how to
estimate these parameters, see [20]); the value Z is a constant chosen to make
P (X|data) properly normalized. The other important point is that the factors
have a special form that appears throughout this paper: each factor has one

value if all of its arguments are in the figure state and another value if one or

more the arguments are in the ground state.

This model is naturally formulated as a factor graph, since the joint posterior
probability P (X|data) is expressible as a product of the factors f(.) and g(.)
(neglecting the normalization constant Z that is independent of X). In the
next section we will develop a simpler version of the model, whose parameters
can be easily learned from training data. Factor BP will then be used to de-
termine how to label individual features (figure or ground), which we describe
in Section 3.

2.3 Figure-Ground Segmentation Using Factor Graphs

In the previous subsection, all measurements were marginal probabilities that
certain features (nodes) all belonged to figure. However, it is rare that we
are given measurements that give direct access to such marginals – instead,
it is much more likely that we have various cues that indirectly reflect such
marginal probabilities. For instance, if we want to find those features in an
image that group into a (roughly) straight line, an important cue will be
the degree of collinearity among triplets of features. Thus, we will use the
same functional form of the maximum entropy model in Sec. 2.2, given by
Eq. 3, to construct a simpler model that uses arbitrary cues rather than direct
measurements of marginal probabilities.

We now express this simpler model for the concrete example given in Sec. 2.2.
Two cues are measured in this example, C123 and C34, which are scalar quan-
tities that reflect the likelihood that the corresponding node subsets {1, 2, 3}
and {3, 4} should be grouped into the figure. (Note that these are arbitrary
cues, not direct measurements of marginal probabilities denoted by p1 and p2

in the previous section.) Then, if we assume conditional independence of the
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two measured cues, we have the following expression for the joint likelihood:

P (data|X) = P (C123|X)P (C34|X) = P (C123|x1, x2, x3)P (C34|x3, x4) (4)

Following the form of Eq. 3, we will impose the requirement that the individual
likelihood functions P (C123|x1, x2, x3) and P (C34|x3, x4) will each depend only
on whether the states they are conditioned on are all figure or not. In other
words, P (C123|x1, x2, x3) = Pon(C123) if x1x2x3 = 1 and P (C123|x1, x2, x3) =
Poff (C123) if x1x2x3 = 0.

Having defined the likelihood functions Pon(.) and Poff (.) for each cue, we
learn them from training data, rather than choosing arbitrary expressions and
parameters for them. (In our application on finding text, we use histograms
learned from training data to represent these distributions, but other ways of
learning and representing the distributions may be more appropriate for other
applications.)

The model is used to perform inference by estimating the MAP (maximum a
posterior), where the posterior is given by Bayes rule:

P (X|data) = P (X)P (data|X)/P (data) (5)

Note that maximizing the posterior with respect to X is equivalent to maxi-
mizing P (X)P (data|X), since P (data) is independent of X.

As before, X = (x1, x2, . . . , xN), where N is the number of nodes (features) in
the image to be grouped. Assume that there is a cue for each triple (i, j, k) of
neighboring features, Cijk, where i < j < k. (It is straightforward to generalize
this model to multiple cues with arbitrary arities; here we consider just one cue
of arity three.) Then the expression that needs to be maximized to estimate
the MAP is:

P (X)P (data|X) = P (X)
∏

(ijk)

P (Cijk|xi, xj, xk) (6)

where
∏

(ijk) denotes a product over all feature triples such that i < j < k.

Note that
∏

(ijk) P (Cijk|xi, xj, xk) can be re-expressed as the following:

[
∏

(ijk)

Poff (Cijk)][
∏

(ijk):xixjxk=1

Pon(Cijk)/Poff (Cijk)] (7)

where the restriction xixjxk = 1 in the product ensures that only those triples
whose nodes all belong to figure are included. Since the term

∏

(ijk) Poff (Cijk)
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is independent of X, the MAP can be determined by maximizing the following
expression:

R(X) = P (X)
∏

(ijk):xixjxk=1

Pon(Cijk)/Poff (Cijk) (8)

R(X) is proportional to the posterior distribution (i.e. it is unnormalized, and
the constant of proportionality is the normalization factor, which depends on
the data). Assuming a simple i.i.d. prior, such as P (X) =

∏N
i=1 Pi(xi), where

Pi(xi) equals α if xi = 0 and 1 − α if xi = 1 (e.g. enforcing a preference
that each node belong to ground rather than figure if α > 1/2), R(X) can be
represented by a factor graph with factors of arity one and arity three (for the
prior and likelihood, respectively).

Taking logarithms, an equivalent way of estimating the MAP is to maximize
the following function:

log R(X) =
∑

i

log Pi(xi) +
∑

(ijk)

xixjxk log[Pon(Cijk)/Poff (Cijk)] (9)

where the product xixjxk ensures that the sum is taken only over those triples
whose nodes all belong to figure. We will use factor graph BP to estimate the
MAP of this function, as described in Sec. 3.

2.4 Example of Figure-Ground Segmentation

As a simple example of a factor graph for figure-ground segmentation, consider
the problem of segmenting a collection of points in an image (Fig. 4(a)), where
the figure consists of points that lie on smooth, nearly straight lines, and the
ground consists of all other points. We will define factors that express the
degree of collinearity among points; since any two points define a line, we
will construct arity-3 factors with three points, which are the smallest factors
for which collinearity is a meaningful concept. In this example, given point
features i,j and k in the image, we define the collinearity Cijk of the points as
follows:

Cijk =

∣

∣

∣

∣

∣

(~p1 − ~p2) · (~p2 − ~p3)

||~p1 − ~p2|| ||~p2 − ~p3||

∣

∣

∣

∣

∣

(10)

where ~pi denotes the (x, y) coordinates of point feature i in the image. Note
that Cijk equals 1 when the three points are exactly collinear and 0 when they
define a right triangle; points that are approximately collinear will have values
less than, but close to, 1.

9



We measure the distribution of Cijk from a database of training examples,
where Pon(Cijk) and Poff (Cijk) are the conditional distributions for triples of
points that are on and off (respectively) smooth lines. Specifically, we manually
label those features in our database that we deem as figure, and all other
features are assumed to belong to ground. Then we search for all triples of
points that are sufficiently close to one another (there is no need to include
triples whose points span half of the image, for example). To cut down on
the potentially huge number of triples that can be composed in images with
hundreds or more feature points, we may further exclude (i.e. prune) those
triples for which Cijk is too close to 0. Of the triples thus formed, any triple
composed of points all labeled as figure is used in the calculation of a histogram
representing Pon(Cijk), and all others are used for the histogram representing
Poff (Cijk).

Finally, we estimate an i.i.d. prior on X by empirically counting what propor-
tion of points in the training database belong to figure (see the discussion of
the prior just before Eq. 9).

Having learned Pon and Poff , we can now infer the most likely segmentation
of point features in a new image by finding the value of X that maximizes
log R(X) in Eq. 9. As long as the same pruning procedure is used in learn-
ing and in inference, we expect that the pruning of factors discussed above is
unlikely to change the maximizer of log R(X) by a significant amount. (The
estimate of Poff will automatically reflect the population of triples that sur-
vives pruning; conversely, very few triples belonging to figure will be pruned,
which means that pruning will have a much smaller effect on the estimation
of Pon.) Indeed, such a pruning procedure is essential for making learning and
inference fast enough to be tractable.

Fig. 4 shows a schematic example of a figure-ground segmentation performed
using a simple model of this form. The maximizer of log R(X) was estimated
using factor BP (belief propagation), which is discussed in Sec. 3. Fig. 4(a)
shows the point features input to the algorithm and Fig. 4(b) shows the output,
with figure points drawn as red circles (all the rest are classified as ground).

3 Belief Propagation for Factor Graphs

Belief propagation (BP) is a standard procedure [25,2] for performing inference
on graphical models such as MRFs and factor graphs. A graphical model
specifies the joint distribution of all the variables in the model; a fundamental
challenge in graphical models is to find the most likely values of all the variables
(e.g. the MAP estimate). A naive way of accomplishing this is to exhaustively
search over all combinations of variables, and to find the combination which
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Fig. 4. Simple factor graph example. (a) Collection of points in an image to be
segmented. (b) Points segmented as figure are shown as red circles.

is assigned the highest global probability by the graphical model. Such an
approach is clearly intractable because of the exponentially large number of
such combinations that must be considered. BP is a fast iterative procedure
for estimating the marginal properties of individual variables, which may be
used to estimate the most likely combination of all variables. Specifically, BP
estimates either the marginal probabilities of each variable or some sort of
score indicating which states are most likely for each variable.

The main idea behind BP is that different factors and variables “talk” to each
other at each iteration, passing “messages” to their neighbors with their es-
timates of the neighbors’ likely states. After enough iterations, this series of
“conversations” is likely to converge to a consensus, at which time the marginal
estimates are fully determined. While BP provides only approximate solutions
in general, it converges in a finite number of iterations to the exact solution
when the graphical model has no loops (i.e. cycles), which is the case for
graphical models representing Markov chains or any graphical models whose
connectivity is tree-shaped. Moreover, empirical studies have established [15]
that in practice, BP often converges to good (if somewhat sub-optimal) solu-
tions even in the presence of loops.

While most work in computer vision using BP has been done for pairwise
MRFs [23,4,21,7], BP is readily extended to factor graphs [11]. Here we present
a brief overview of factor graph BP, using notation similar to that of [11]. (A
good introduction to factor graph BP is contained in Chapter 8 of [2], which
can be downloaded at http://research.microsoft.com/˜cmbishop/PRML/ )
We describe the “max-product” version of factor BP, which provides scores
indicating which states are most likely for each variable, rather than the “sum-
product” version, which estimates marginal probabilities for each variable. Not
only does max-product BP provide a direct estimate of the MAP, but it is also
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computationally more efficient.

In factor BP, messages are sent from factors to variables, indicating (at any
iteration) the current estimate of the likelihood of each state for that variable
according to the factor. (In standard treatments of BP [11] there are also mes-
sages sent from variables to factors, but since these are in turn expressed in
terms of the opposite messages – from factors to variables – we will substitute
these expressions anywhere the messages from variables to factors appear.)
The fundamental operation of BP is the message update equation, which de-
fines how to update messages at each iteration, and which one iterates enough
times until the messages converge (though there is no guarantee of conver-
gence in loopy graphs). Then the messages are used to calculate the beliefs,
which provide scores indicating which states are most likely for each variable.

We express the max-product factor BP algorithm in the log domain, where
it is understood that factor functions here are the log of the factors defining
the joint probability of the factor graph, as in Sec. 2.3. In this domain, the
message update equation is as follows:

mf→x(x)← max
∼{x}

(

f(X) +
∑

y∈n(f)\{x}

∑

h∈n(y)\{f}

mh→y(y)
)

(11)

where X is the set of arguments of function f , and ∼ {x} denotes the set of
all arguments of f except for x, which we term the set of “siblings” of x under
factor f (see Fig. 5(a)). Also, n(f) denotes all neighboring variables of factor
f (i.e. all variables directly influenced by f), and n(y) denotes all neighboring
factors of variable y (i.e. all factors that directly influence y).

The message update equation is illustrated in Fig. 5(b). The first sum in the
update equation is over all siblings of variable x. For each sibling y, the second
sum includes all messages from factors other than f that flow into the sibling.

Fig. 5. (a) The siblings of a node variable x under factor f are the other variables
included in the factor, in this case y and z. (b) The message update mf→x(x),
indicated by the solid line with the arrow, is calculated by summing all messages
from other factors flowing to the siblings of x, shown as dashed lines.
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Note that, for each factor f and neighboring variable x, updating all messages
mf→x(x) has worst-case complexity O(|S|M), where M is the number of vari-
ables coupled by factor f and |S| is the number of allowed states of each of the
M variables (assuming the state spaces are the same size for each variable).
This is because Eq. 11 must be iterated for each value of x on the left-hand
side, and for each value of x the max must be evaluated over the remaining
M − 1 sibling variables ∼ {x}.

The order in which messages are updated defines the message update schedule.

In an asychronous schedule (which is commonly used on serial computers), one
message (i.e. specified by one factor and one variable) is updated at a time
according to Eq. 11 at each iteration. An entire message “sweep” refers to a
sequence of message updates, such that every possible message in the graph
is updated once. Generally speaking, message convergence requires several
sweeps, depending on the connectivity of the factor graph and the precise
nature of the probabilities encoded by it.

Because of a simplification that arises from our figure-ground application, we
use instead a fully synchronous schedule, in which all messages are updated
in parallel (see Sec. 3.1 for details).

Once the messages have converged to some value (which, in general, we can
only hope happens after enough message updates), we can calculate the belief
function for each node:

b(x) =
∑

f∈n(x)

mf→x(x) (12)

In max-product BP, the belief is a function with the following property: the
state that maximizes the belief of a node is an estimate of the node’s state in
the most likely global configuration of states across the entire graphical model
(i.e. the MAP estimate if the graphical model is interpreted as representing a
posterior distribution).

3.1 Special Case: Factor BP for Figure-Ground

In this section we consider the behavior of factor BP for the case of a factor
graph we have devised for performing figure-ground segmentation. Since we
are working in the log domain, our factor graph represents the log posterior
(unnormalized) given in Eq. 9. We re-express this equation as follows:

log R(X) = G
∑

i

xi +
∑

(ijk)

xixjxkL(Cijk) (13)
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where we define L(Cijk) = log[Pon(Cijk)/Poff (Cijk)]. As a result, the factor
corresponding to triple (i, j, k) is f(xi, xj, xk) = xixjxkL(Cijk). As before, we
assume that the prior is i.i.d. (i.e. each feature has a prior bias for ground, in-
dependent of other features), where G < 0 is a constant less than 0 expressing
a bias in favor of ground. (The prior need not be normalized here, since the
expression is for the log of the unnormalized posterior.)

Let us assume that we initialize all messages to 0, as is standard in max-
product BP. We now analyze a synchronous (parallel) message update schedule
applied to this initial condition. It is straightforward in this case to determine
the message values after one sweep (i.e. each message has been updated exactly
once). For all messages flowing from arity-1 factors (e.g. corresponding to the
prior), the expression is:

m
(1)
f→x(x = 1) = G (14)

m
(1)
f→x(x = 0) = 0 (15)

since the variables receiving messages from these factors have no siblings. Here
the superscript (1) indicates the value of the messages after one sweep.

All other messages (i.e. greater than arity-1) have the following form after one
sweep:

m
(1)
f→x(x = 1) = max(0, Lf ) (16)

m
(1)
f→x(x = 0) = 0 (17)

where Lf denotes the value of L(Cijk) when factor f is specified by the triple
(i, j, k). Notice that no message values appear on the right-hand side of these
equations: all messages on the left-hand side are being updated in parallel,
and any messages referred to on the right-hand side of Eq. 11 have been set
to 0.

If we use the messages obtained after just one sweep, the beliefs have a simple
expression. Since only the difference between beliefs for the figure and ground
states matters, we define Bx = bx(x = 1) − bx(x = 0). The expression for Bx

is then:

Bx =
∑

f∈n(x)

max(0, Lf ) + G (18)

A value of Bx > 0 means that the estimated optimal state of x is 1 (figure),
and Bx ≤ 0 indicates ground.
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Finally, we note that in a previous version of this work [19], we constructed a
similar factor graph for which Lf > 0 for all factors, and no prior was used. In
this case we showed that one sweep of factor BP guaranteed convergence. The
difference here is that Lf and the prior are learned from training data, and so
the resulting values of Lf can be positive or negative. As a result, convergence
is no longer guaranteed in one sweep; however, in our experience with the text
finding algorithm convergence is attained in comparatively few sweeps (10 or
fewer), and just a few sweeps suffice for good performance of the algorithm.

4 Application: Finding Text

We now describe a specific application of our figure-ground segmentation
framework to the problem of finding text. In this application, a bottom-up
procedure is used for grouping edges into composite features that are sig-
natures of regions containing text. The next subsection describes how these
features are constructed, and subsequent subsections explains how the features
are grouped into factors and how the resulting factor graph is used to detect
the presence of text features.

4.1 Constructing Features

We use a very simple edge detector to provide the basic elements to be grouped.
First, the image is blurred slightly and decimated by a factor of three in each
dimension, yielding a size of 648 × 864 pixels. Two kinds of edges are de-
tected, corresponding to local maxima or minima of the horizontal and ver-
tical image intensity derivatives. The edges are grouped into line segments,
which are approximately straight and fully connected sequences of edge pix-
els (with between 3 and 20 pixels, which sets an appropriate range of scales
for text detection). There are two kinds of line segments, those that are ori-
ented (approximately) vertically and those that are oriented (approximately)
horizontally. Vertical segments that are sufficiently close together and have
opposite polarity are grouped into “weakly matched vertical edges”, shown
in Fig. 6(a). “Weakly matched horizontal edges” are determined in a similar
way (see Fig. 6(b)). As the figure suggests, weakly matched edges are features
designed to be prevalent along the borders of letter strokes.

Next we prune the set of weakly matched vertical segments to obtain our final
features, “anchored vertical segments” (see Fig. 7). An anchored vertical fea-
ture is a weakly matched vertical segment whose topmost or bottommost pixel
lies sufficiently close to the leftmost or rightmost pixel of a weakly matched
horizontal segment. By “sufficiently close” pixels we mean that they are either
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Fig. 6. Edge features used to construct text features shown on cropped image of
street sign. (a) Weakly matched vertical edge segments. (b) Weakly matched hori-
zontal edge segments. Edges shown in red and green to indicate opposite polarities.

identical or one pixel is one of the eight nearest neighbors of the other.

Fig. 7. Anchored verticals. (a) Anchored verticals shown for image in previous figure.
(b) Same as (a) but shown for entire image. Note density and regularity of anchored
verticals in text region, where bottoms and tops tend to be at the same level. By
contrast, anchored verticals are scattered sparsely and irregularly throughout rest
of the image.

As Fig. 7 shows, anchored verticals have a distribution on text regions that is
significantly different from the distribution outside of text regions. Anchored
verticals are distributed densely on text regions, and their bottoms and tops
tend to be aligned to the same level. By contrast, outside of text regions, an-
chored verticals are distributed more sparsely and irregularly. We will exploit
this differential distribution of anchored verticals (as well as other cues) to
segment out text regions in an image.

4.2 Grouping Cues and Factor Construction

Having constructed a set of useful anchored vertical features that have a dis-
tinctive signature in text regions, we now proceed to construct a factor graph
based on these features. In the factor graph, each anchored vertical is a vari-
able node. Factor nodes are defined as triples of anchored verticals that may
plausibly belong to one text region. As we have shown, one iteration of factor
BP can be performed very simply, requiring minimal calculations (see Eq. 18).
However, the search for factors is computationally intensive, since there are
many possible triples of anchored verticals to consider in each image.

The search for factors is conducted by considering all triples of anchored verti-
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cals that satisfy a number of criteria based on multiple cues. For any triple of
anchored verticals, up to two possible factors can be formed: one from the tops
of the three anchored verticals, and another from the bottoms. Here “top” and
“bottom” refer to the upper and lower endpoints, respectively, of the anchored
vertical. Once the factors are extracted from the image, multiple cues are used
to define the “strenth” Lf of any factor f using learned distributions Pon(.)
and Poff (.). An example of these learned distributions is shown in Fig. 8.
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Fig. 8. (a) Conditional distributions Pon(.) (blue) and Poff (.) (red), measured by
histogramming, for an alignment cue. (b) logPon(.)/Poff (.) for same cue.

Next we discuss the types of grouping cues used in our factor graph before
defining them precisely. The following types of cues are used:

(a) Alignment: this reflects the fact that anchored vertical bottoms belonging
to a group of text tend to lie along a straight line. (A similar tendency holds
for anchored vertical tops, but to a lesser extent since upper and lower case
letters have different heights.)

(b) Parallelism: neighboring anchored vertical segments tend to be roughly
parallel to each other. However, when neighboring segments are both very well
aligned and very highly parallel, this is a sign that the segments belong to a
periodic structure (such as the rails of a fence or the cracks between bricks in
a building) that is not text. To exclude such false positives, we have defined a
joint (top) alignment and parallelism cue, which is the only two-dimensional
vector cue we have used. Such a cue requires two-dimensional histograms to
be learned from training data, but this cue is otherwise treated just like the
other (one-dimensional scalar) cues.

(c) Orientation: most text of interest is oriented roughly horizontally. There-
fore, we define an orientation cue that measures the (unsigned) orientation of
the line connecting the leftmost and rightmost tops (or bottoms) of a segment
triple.
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(d) Color consistency: RGB color values are relatively consistent across the
background of a typical text sign, since the background is usually a homoge-
neous color (different from the text letters themselves) and the illumination
tends to be consistent across the background.

(e) Connectivity: this cue reflects the fact that anchored vertical segments are
connected to more factors when they belong to text than when they belong to
non-text. It is a “meta”-cue since it is calculated on the basis of factors due
to all other cues.

In order to define the cues more precisely we define the following notation. The
subscripts 1, 2 and 3 denote the three tops or bottoms of a triple of anchored
verticals, where they are ordered from left to right across the image. Top or
bottom locations will generically be referred to as pixel locations (xi, yi), where
i = 1,2 or 3 (here xi is the x-coordinate, not the figure/ground state of feature
i). Line L13 is the line segment connecting (x1, y1) and (x3, y3).

Expressed in this notation, the following grouping cues are learned from train-
ing data and used to construct factor graphs.

(1) Bottom alignment: Let y∗ be the y-coordinate of the point on L13 (defined
in terms of bottoms) having x-coordinate equal to x2. Then the bottom align-
ment cue is defined as abottom = |y∗− y2|. (Perfect alignment would mean that
(x2, y2) lies exactly on L13, i.e. abottom = 0.)

(2) Joint parallelism and top alignment: this cue is defined as ~J = (p, atop).
Here p is defined as max(|θ1 − θ2|, |θ2 − θ3|), where θi is the orientation of
anchored vertical i. atop is defined similarly to the bottom alignment cue above.

(3) Orientation of tops and of bottoms: given top (or bottom) locations (xi, yi),
the overall orientation is defined by the orientation of the line connecting
(x1, y1) and (x3, y3). The orientation is an unsigned number defined such that
a horizontal line has an orientation of 0. The orientations of the tops and
bottoms define two separate cues, φtop and φbottom.

(4) Color consistency: denoting an RGB vector by ~I = (R,G,B), we define
~I t
i and ~Ib

i to be the RGB values near the top (superscript “t”) and bottom
(superscript “b”) of anchored vertical i = 1, 2, 3. Specifically, the RGB value
is defined at the location 6 pixels above the top point and 6 pixels below the
bottom point. Then the color consistency cue is defined as C =

∑

i |~I
t
i − ~Ib

i |,
where |.| is the L1 norm.

(5) Connectivity: for each anchored vertical segment, this arity-1 cue is simply
the total number of factors connected to the segment, denoted T .

These cues were selected by exploring a larger set of cues and choosing only
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those cues with sufficient discriminating power (which we discuss at the end
of this subsection).

Next we describe the selection process, which uses some of the grouping cues
described above (as well as a few other cues). The first stage of the selection
process removes all segments whose length is outside of a certain range (cor-
responding to the range of scales we are interested in). In addition, the color

consistency of the segment all by itself (i.e. the value |~I t − ~Ib|, reflecting how
well the RGB values match above and below the segment) is computed, and
the segment is discarded if this value is above a threshold.

Having pruned many single anchored vertical segments in the first stage of the
selection process, the goal of subsequent stages is to construct arity-3 factors.
Arity-3 factors are built by combining (temporary) arity-2 factors, which are
in turn constructed from pairs of segments that are sufficiently close together,
and whose orientation (defined from a line connecting the midpoint of each
segment) is sufficiently close to 0. We impose an ordering constraint to avoid
double-counting: the first and second elements of each pair must be ordered
from left to right.

Arity-3 factors are constructed by combining two arity-2 factors sharing a
common segment. To construct an arity-3 factor, the following constraints
must be satisfied: the three segments of the factor must be ordered from left to
right; the bottom alignment cue of the three segments must be below a certain
threshold; and the color consistency cue must be below a particular threshold.
Once all candidate arity-3 factors have been computed, the connectivity cue
is then computed for each segment, and all segments (and factors connected
to the segment) are pruned for which the connectivity is sufficiently low. (All
arity-2 factors are then deleted.)

These selection cues and thresholds were selected by trial and error to ensure
that few “bad” factors were discarded from true text regions, while keeping
the total number of factors in an image to a manageable number.

Empirical distributions Pon(.) and Poff (.) were first learned for all the grouping
cues from a set of 71 training images as follows. Anchored vertical segments
were extracted from each image, and those segments that lay on text were
manually selected (by computer mouse). Pon(.) and Poff (.) were learned as
1-D histograms, separately for each of the grouping cues above (except for

the joint 2-D cue ~J , which was learned using a 2-D histogram). For each
grouping cue, an ROC curve was computed to determine the strength of the
cue in discriminating between text and non-text regions; cues demonstrated
by the ROC curve to have poor discriminating power were not used. (Other
measures of discrimination, such as the Kullback-Leiber distance and Chernoff
information [6], would give similar but slightly different results.)
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We note that the form of the selection process, in particular the choice of
selection cues and thresholds, has a large effect on the resulting empirical dis-
tributions Pon(.) and Poff (.) of the grouping cues – in fact, these distributions
are only defined relative to a specific selection process. For example, if a par-
ticular selection cue threshold is set strictly so that it removes many potential
factors in the selection process, the resulting Pon(.) and Poff (.) distributions
will have much less discriminating power than if the cue threshold is set loosely
(because the strict selection threshold has already done much of the work of
discriminating between on and off distributions).

4.3 Performing Inference with the Factor Graph

After all factors have been constructed, as described in the previous section,
belief propagation is performed to perform inference with them. Any segment
whose belief value indicates it is more likely to belong to figure than to ground
is chosen as a candidate winner. For an example of this process, see Fig. 9,
which shows the anchored vertical segments extracted in a typical input image,
and Fig. 10 for the results of belief propagation applied to this image.

segments = 274
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Fig. 9. Input image with anchored vertical segments colored to indicate correct
(ground truth) labels: green means text and red means non-text.

Note that belief propagation correctly discards many, but not all, false posi-
tives, and detects most of the true text (while leaving some gaps).
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Precision/Recall = 60,  88, 
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Fig. 10. Output before final processing step: all segments are shown that are des-
ignated as figure by belief propagation. Green segments are true positives and red
segments are false positives.

A post-processing stage is then used to clean up the results of belief propaga-
tion, exploiting the fact that false positive segments tend to appear in isolated
clusters, while true positives tend to be densely arrayed along lines of text.
This post-processing stage consists of a simple convolution process, in which
a sliding horizontal window (one pixel high by 100 pixels across) is applied
across the image. At each location of the window, the number of candidate
winner segments that it intersects is computed, and if this number is above a
threshold then the window location (i.e. the center of the window) is classified
as a winner. This process serves to remove isolated candidate winners and
reinforce those that are densely arrayed along lines of text. See Fig. 11 for an
example.

We show another result (also taken from one of the 40 test images), this time
demonstrating the presence of a false positive and false negative text detection.
Fig. 12 shows the input image with extracted segments; Fig. 13 shows the
results of running BP on the image, which incorrectly removes some of the
valid text segments and fails to remove some clusters of non-text segments.
The final result is given in Fig. 14, which shows that an insufficient number of
true positives were detected by BP to declare the presence of text, and that
the chance alignment of features in the tree generated a false negative text
detection.
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Final winners
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Fig. 11. Output after final processing step (convolution), with lines of text detected
by algorithm shown as horizontal green lines.

segments = 816
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Fig. 12. A second image with anchored vertical segments colored to indicate correct
(ground truth) labels: green means text and red means non-text.
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Precision/Recall = 7,  40, 
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Fig. 13. Output before final processing step: all segments are shown that are des-
ignated as figure by belief propagation. Green segments are true positives and red
segments are false positives.

5 Experimental Results

Our algorithm was programmed in unoptimized Matlab code, which took
about one minute to search for the presence of text in each image. We trained
our algorithm on 71 images and tested it on 40 images (different from the
training images). In these 40 test images a total of 18142 anchored vertical
segments were extracted, of which 767 belong to text and 17375 belong to
non-text (based on manual inspection of the images). The results of belief
propagation (before the convolution post-processing step) are that 647 out of
767 text segments were detected, with 540 false positives, corresponding to a
true positive rate of 84 % and a false positive rate of 3 %.

We also evaluate the performance of the algorithm after the convolution post-
processing step, quantifying detection performance at the level of entire lines
of text (i.e. a street sign typically contains one line of text) rather than indi-
vidual anchored vertical segments. Among the 40 test images there are 53 hits
(true positive detections), 8 misses (false negatives) and 4 false alarms (false
positives). (False alarms mainly came from building windows and railings.)

We note that there is some ambiguity in these performance statistics, since
it is not always clear from examining an image how to distinguish between
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Fig. 14. Output after final processing step (convolution), with lines of text detected
by algorithm shown as horizontal green lines. Notice presence of false positive and
false negative text detection.

text and non-text (e.g. when the resolution is poor). Moreover, in some text
regions too few anchored vertical segments are extracted, which obviously
impairs performance; the solution to this problem is to improve the feature
extraction procedure.

6 Discussion

We have presented a novel feature grouping framework, based on factor graphs,
which emerges naturally from a simple maximum entropy model of figure-
ground segmentation. The framework allows the use of multiple grouping cues,
and the contributions of these cues are learned from training data. We have
applied the framework to the problem of segmenting text in natural scenes,
and experimental results demonstrate the feasibility of the approach.

Future work will focus on improving the reliability of text detection. The main
limitation of the current approach is the use of anchored vertical segments,
which are not reliably detected in some text regions (especially those contain-
ing letters with few vertical elements). One way to ameliorate this problem
is to simply lower the threshold of detection so as to detect more segments;
another way is to eliminate the requirement that anchored vertical segments

24



must lie near horizontal edge segments. Either solution will increase the num-
ber of true and false candidate segments, in which case additional cues may
need to be strengthened in the selection process to decrease the total number
of candidates, such as color consistency (which currently samples very few
pixels but could easily be extended to sample more neighboring pixels). The
connectivity cue might be strengthened to reward connections to segments
lying to the left or right as opposed to segments lying above or below (since
we are assuming the text is roughly horizontal). Another issue that may im-
pair performance is the conditional independence assumption that underlies
our approach (Eq. 4), which could be alleviated by adopting a conditional
random field (CRF) framework [16].

In order for our algorithm to function as part of a practical system for finding
and reading text, we will also have to use the text features output by it to
determine appropriate bounding boxes to enclose the text, and use OCR to
actually read the text. We note that the OCR stage will have the benefit of
discarding some false positives which cannot be ruled out by our algorithm
alone. Finally, the algorithm needs to be optimized for speed so that it can
be ported to a camera cell (mobile) phone, as was accomplished in a previous
version of this work [19].
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