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of either the decision to pursue or the decision to continue 
fixation accounts for the observed neural phenomena.
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Introduction

While most studies of action selection have focused on how 
concrete rules (e.g., ‘red means stop’; ‘green means go’) 
guide a one-to-one mapping between a sensory stimulus 
and a motor response, less is known about how abstract 
rules connect many sensory inputs to a specific motor 
output, or a specific sensory input to many motor outputs 
(Bunge 2004; Cisek and Kalaska 2010). For example, for 
the rule ‘if a pedestrian is on the crosswalk then stop, but 
if the pedestrian is on the sidewalk then go,’ pedestrians 
of different physical characteristics may result in a single 
action, and a particular pedestrian may result in different 
actions depending on where they are standing. The prefron-
tal and premotor cortices in human and non-human pri-
mates have been shown to be involved in encoding abstract 
rules (White and Wise 1999; Asaad et al. 2000; Wallis et al. 
2001; Bunge et al. 2003; Wallis and Miller 2003; Muham-
mad et al. 2006; Bengtsson et al. 2009; Badre et al. 2010), 
which allow an arbitrary sensory motor association for limb 
and eye movements to be made (Mitz et  al. 1991; Asaad 
et al. 1998).

The supplementary eye field (SEF) in the medial frontal 
cortex of primates (Schlag and Schlag-Rey 1987) plays a 
key role in conditional stimulus–response mapping for sac-
cadic (Chen and Wise 1995, 1996) and smooth pursuit eye 
movements (Kim et al. 2005; Shichinohe et al. 2009). SEF 
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neurons of macaques have been shown to modulate activity 
in a conditional go–nogo task that stipulates that the ani-
mals either follow a moving target with an eye movement 
if it crosses a visible zone on the screen (‘go’), or maintain 
fixation if it bypasses the zone (‘nogo’). Two populations 
of neurons in the SEF exist, one with higher activity for 
the ‘go’ rule-state and the other with higher activity for the 
‘nogo’ rule-state (Kim et al. 2005). These neurons are either 
poorly or not at all directionally tuned, and their activity 
signals better the veridical rule-state than the behavioral 
choice in the decision task (Yang et al. 2010). Furthermore, 
they are differentially active for the same target trajectory 
to signal alternative rule-states when the decision boundary 
is changed (Heinen et al. 2011).

SEF neurons increase activity for their preferred rule-
state. We asked whether the decrease in activity of the same 
neurons occurring for the alternative rule-state could also 
play a role in decision making. We found that the activity 
decreased more rapidly when the non-preferred rule-state 
was relatively easier to anticipate, and these neurons dis-
criminated easy trials from difficult ones in the non-pre-
ferred rule-state before they did so in the preferred rule-
state. These results are consistent with the idea that activity 
of a neuron that decreases for the non-preferred rule-state is 
involved in the decision process.

We designed and simulated a computational model to 
understand the underlying mechanism of these neural phe-
nomena. The model incorporates a pair of mutually inhib-
ited integrators, each of which accumulates evidence over 
time in favor of a target trajectory that complies with either 
the ‘go’ or ‘nogo’ rule-state. The output of each integrator 
mimics the outputs of SEF neurons during the task.

Methods

Behavioral task

In the ocular baseball task we used, each trial began with 
the appearance of a white spot of diameter 0.5° visual 
angle, located at the center of the screen. The spot was sur-
rounded by a visible square (12° × 12°), which we refer to 
as the ‘plate’ (Fig. 1a). To begin a trial, the monkey had to 
acquire fixation and maintain its gaze within a 4° electronic 
square window centered at the fixation point for 500 ms. At 
the end of the fixation period, a target that was identical to 
the fixation point appeared either left or right of the plate 
on the horizontal meridian, 20° eccentric from the center. 
The target then moved at a constant velocity of 30°/s 
toward the vertical meridian of the screen and either inter-
sected or bypassed the plate. The direction of the trajectory 
was randomly selected from eight possible Cartesian angles 
(±10°, ±20°, ±30°, and ±40°) with respect to horizontal, 

yielding 16 possible trajectories. Target motion duration 
was 1,200 ms. The fixation point and plate remained visible 
throughout a trial.

The animal was required to track the target if it inter-
sected the plate (±10° and ±20° trajectories; ‘go’ or 
‘strike’ trials) using smooth pursuit eye movements, or 
maintain fixation if it did not (±30° and ±40° trajectories; 
‘nogo’ or ‘ball’ trials), to receive liquid reward. In strike 
trials, the animal had to acquire the target within 300 ms 
after it intersected the plate and maintain gaze within 3° of 
it until it disappeared. The inter-trial interval ranged from 
300 to 700 ms (randomly chosen). A critical aspect of ocu-
lar baseball is the delay period, which begins at the onset of 
target motion and extends until plate intersection. During 
the delay period, the animal was required to maintain fixa-
tion so that the neural activity in the absence of eye move-
ments could be assessed.

Animal care and surgery

Two adult male rhesus (Macaca mulatta) monkeys weigh-
ing 7–13 kg performed the tasks. Aseptic survival surger-
ies were performed on each animal under Isoflurane gas 
anesthesia in order to implant a recording chamber over 
the SEF, a head-restraint device and an eye coil. A cra-
niotomy was trephined in the skull centered at a location 
24  mm anterior in Horsley–Clark stereotaxic coordinates. 
A stainless steel recording chamber (Crist Instrument) with 
an inner diameter of 1.4 cm was positioned over the crani-
otomy and secured along with the other implants with den-
tal acrylic. The head-restraint device was positioned on the 
midline, caudal to the chamber. The eye coil was implanted 
under the conjunctiva of one eye. All procedures were 
approved by the Smith-Kettlewell Institutional Animal 
Care and Use Committee, in compliance with the guide-
lines set forth in the United States Public Health Service 
Guide for the Care and Use of Laboratory Animals.

Data acquisition

Experimental control and data acquisition were performed 
using a Pentium IV 3.4  GHz PC (Windows XP) running 
LabVIEW Express 7.0 (National Instruments) with the 
real-time module. Visual stimuli were displayed on a 24″ 
computer monitor driven by a Macintosh G4 (MacOS 9) 
system, using MATLAB (The MathWorks, Inc.) software 
and the Psychophysics Toolbox real-time visual display 
tools (Brainard 1997). Eye position signals were recorded 
using a magnetic field system (CNC systems) or a video-
based eye tracker (EyeLink 1000). Horizontal and verti-
cal eye velocities were calculated off-line by differentiat-
ing and filtering the recorded eye position signals, using a 
2-pole Butterworth non-causal filter with a cutoff of 50 Hz. 
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The computer acquired the eye position signals at a sam-
pling rate of 1.0 kHz. Single neurons were recorded from 
the SEF using tungsten microelectrodes (FHC) with an 
impedance of 1.0–3.0  MΩ, tested at 1,000  Hz. A manual 
hydraulic (Trent Wells Inc.) or a motorized (Crist Instru-
ment) microdrive was used to advance the microelectrode 
through the recording chamber. Electrical signals from 
the electrode were fed into a TDT Medusa preamplifier 
(Tucker Davis Technologies, Alachua, FL). Amplified sig-
nals were sampled at 25 kHz, and spikes were isolated by 
TDT OpenEx software with high- and low-pass filters at 
6 kHz and 500 Hz, respectively.

Data analysis

All data analyses were conducted off-line using cus-
tom-made programs written in MATLAB (The Math-
Works, Inc.). The raw spike counts were converted into a 

continuous smoothed spike density function aligned on tar-
get onset by convolving a Gaussian function having a fixed 
temporal width of 20 ms. To determine the time that neu-
ronal activity first became different for strike and ball trials, 
we subtracted the spike density function averaged across 
strike trials from the spike density function averaged across 
ball trials for each neuron. The absolute value of the result-
ing spike density function will be referred to as the differ-
ential spike density function. The time at which significant 
differential activity between strike and ball trials began was 
defined as the instant at which the difference in post-target 
spike density exceeded twice the standard deviation (2SD) 
of the mean absolute difference in activity in a 300-ms 
interval prior to target presentation, provided that the differ-
ence eventually reached four times the standard deviation 
(4SD) and remained above the 2SD threshold for at least 
50 ms (Ray et al. 2009). Pre-target differential activity was 
used to set the threshold in order to minimize the chance 

(a) (b)

(d)(c)

Fig. 1   a Oculomotor baseball task. The target appeared either left 
or right to a square (plate) and moved toward the vertical meridian 
of the screen along one of sixteen straight trajectories that subtended 
10°, 20°, 30°, and 40° relative to the horizontal meridian. The animal 
tracked the target using smooth pursuit eye movements (gaze traces 

shown by thin black lines) after it intersected the plate in ‘strike’ trials 
(green lines: 10° and 20°) or maintained fixation if it did not in ‘ball’ 
trials (red lines: 30° and 40°). b Eye velocity in strike (green) and 
ball (red) trials. c, d Performance of individual animals in the task for 
each motion directions
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of false identification of task-unrelated post-target differen-
tial activity. Our criterion for determining whether a given 
neuron discriminated between rule-states was that the onset 
of significant differential activity occurred between 80 ms 
(visual delay in the SEF, Pouget et al. 2005) and the aver-
age pursuit onset time (see Fig. 2a–d). Only those neurons 
that discriminated between rule-states were used for further 
analysis in the manuscript.

The ability of populations of neurons to discriminate two 
different target trajectories within a rule-state (either ‘go’ or 
‘nogo’) was examined using receiver operating characteris-
tic (ROC) analysis (Green and Swets 1966). Rewarded tri-
als were sorted by target trajectory angle. Neurons that con-
tributed at least ten trials corresponding to each of the four 
angles of target trajectories were included in the analysis. 
The spike density functions within a rule-state accompany-
ing a pair of angles in which the animal either tracked the 
target (strike trials: ±10° and ±20°) or maintained fixation 
(ball trials: ±30° and ±40°) were compared. We grouped 
all correct trials into four sets corresponding to four cardi-
nal motion directions with respect to the horizontal merid-
ian irrespective of sign, i.e., 10°, 20°, 30°, and 40°. Spike 
trains from each of the original set of trials were resampled 
to construct 500 sets of simulated spike trains for a relia-
ble comparison (Song and McPeek 2010). In each of these 
resampled sets, the number of simulated spike trains was 
the same as the number of original spike trains. A simu-
lated spike train was constructed by randomly selecting one 
trial from the set of original trials at every 1 ms. If a spike 
occurred in that trial at that instant, the spike was added to 
the simulated spike train. Spike density functions were con-
structed for these spike trains by aligning them on the time 
of target onset and convolving a Gaussian function having 
a fixed temporal width of 20 ms. The proportion of trials 
exhibiting a higher firing rate than a criterion in one set was 
plotted against that for the other set at a given time to con-
struct a ROC curve by varying the criterion from zero to the 
maximum firing rate at a regular interval of 1 spike/s. Com-
parisons were conducted by calculating the areas under 
the ROC curves for successive 1-ms increments, starting 
200  ms before target presentation and continuing for the 
next 1,200 ms. The area under the ROC curve provides a 
quantitative measure of the separation between two distri-
butions of activity. An area under the ROC curve of 0.50 
signifies that the two distributions are completely overlap-
ping, whereas the extreme values of 0.00 or 1.00 signify 
that the two distributions are completely non-overlapping.

Model description

In order to examine the mechanism underlying discrimina-
tion of decision rules by two complementary populations 
of SEF neurons, we designed a computational framework 

that primarily consists of a comparator and a pair of mutu-
ally inhibited leaky integrators (Fig.  4a). The following 
are the key assumptions underlying the model. (1) A com-
parator estimates the vertical distance between the target 
and a noisy representation of an imaginary straight line 
that connects the origin of the target and the corner of the 
plate nearest to the target trajectory. We refer to this line 
as the decision boundary, since this line divides target 
trajectories into two groups corresponding to alternative 
motor decisions: ocular pursuit and fixation. (2) At time t 
of the simulation, the location (x, y) of the moving target 
in a two-dimensional Cartesian coordinate system is cal-
culated from x = −ecc + vt cos θ and y = vt sin θ, where 
ecc is the eccentricity (=20°), v is the velocity (30°/s), 
and θ (10°/20°/30°/40°) is the angular direction of the tar-
get. (3) The vertical position of the decision boundary at a 
time t is yB = vt cos θ tan β + �yB, where β (=23.2°) is 
the inclination of the decision boundary on the horizontal 
meridian and �yB is a random number sampled from white 
Gaussian noise of power ρ. (4) If the position of the target 
lies on or below the decision boundary (i.e., y ≤ yB), the 
comparator signals that the target is likely to intersect the 
plate, and if the position of the target lies above the bound-
ary (i.e., y > yB), the comparator signals that the target is 
likely to miss the plate. Therefore, at a given instance of 
time, the comparator enables either the GO or NOGO unit 
to sample evidence. (5) At each clock tick, either the GO 
or NOGO unit samples evidence in favor of either ocular 
pursuit or fixation, respectively, from a normal distribution. 
The new sampled evidence is then added to the total evi-
dence gathered up to that point of time in the correspond-
ing integrator. (6) Information leaks from each integrator in 
proportion to the amount of evidence gathered by that inte-
grator. (7) The GO and NOGO units inhibit each other with 
strength proportional to the amount of evidence available 
in the individual integrators. Note that without inhibition, 
a loss of evidence already accumulated could balance the 
accumulation of new evidence, resulting in the net evidence 
accumulated by the GO and NOGO units reaching asymp-
totic levels (Usher and McClelland 2001). (8) Because the 
firing rate of a neural population is finite and limited, an 
additional dissipation of information begins as soon as the 
accumulated evidence reaches a threshold (=1) at a rate 
proportional to the amount of evidence available in the cor-
responding integrator.

In practice, at every 1-ms interval, net evidence in the GO 
(uGO) and NOGO (uNOGO) units was increased by �uGO and 
�uNOGO, respectively. If the GO unit was enabled to sample 
new evidence, �uGO = IGO − γ uGO − ηuNOGO − φuGO 
and �uNOGO = 0; if the NOGO unit was enabled, 
�uNOGO = INOGO − γ uNOGO − ηuGO − φuNOGO and 
�uGO = 0, where I was input (evidence) to either GO or 
NOGO unit sampled from a Gaussian distribution with 
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Fig. 2   Activity of a representa-
tive strike neuron (a) and a ball 
neuron (b) in the SEF during 
pursuit (‘go’ rule-state, green 
traces) and fixation (‘nogo’ rule-
state, red traces) aligned on the 
target onset. Neurons increased 
or decreased activity to indicate 
their preferred or non-preferred 
rule-state, respectively. Thick 
black lines demarcate the time 
of significant differential activ-
ity shown by dotted black lines. 
Green dots indicate pursuit 
latencies in individual strike 
trials on the abscissa. Broken 
green lines indicate the average 
pursuit latencies. Cumulative 
distributions of the time of 
differential activity between 
pursuit and fixation for the 
populations of strike (c) and 
ball (d) neurons are shown by 
solid black lines. Pursuit latency 
distributions across trials in 
the corresponding sessions are 
shown by black dotted lines. 
Broken blue and green lines 
indicate delays to intersect the 
plate when the target moved 
along 10° and 20° trajectories. 
Broken magenta and red lines 
indicate delays to intersect an 
imaginary vertical extension 
of the leading edge of the plate 
when the target moved along 
30° and 40° trajectories. Neural 
discrimination of go–nogo 
rule-states was mostly predic-
tive as it happened before the 
stimulus fulfilled the condition 
for a rule-state. Spike density 
functions averaged across the 
populations of strike (e) and 
ball (f) neurons when the target 
moved along 10° (blue), 20° 
(green), 30° (magenta), or 
40° (red) trajectories. Shaded 
regions of corresponding colors 
indicate standard error of the 
mean. The average (±s.e.m) 
rate of increase in activity of 
strike (g) and ball (h) neurons in 
three consecutive epochs after 
the target onset was different 
for different motion directions. 
Both types of neurons exhibited 
a rapid decrease in activity in 
the second epoch (highlighted 
by gray rectangles) when their 
non-preferred rule-state was 
easier to anticipate
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mean μ and standard deviation σ. The strengths of leakage 
and inhibition were γ and η, respectively. The strength of 
dissipation (ϕ) in addition to leakage remained at 0 until 
the accumulated evidence uGO or uNOGO reached the thresh-
old (=1).

Estimation of model parameters

Because discharge rate of strike neurons in response 
to 10° motion direction peaked on average (±s.e.m) 
506  ±  29  ms after target onset, we estimated the mean 
(μ  =  0.002  ms−1) and arbitrarily chosen the standard 
deviation (σ =  0.01 ms−1) of the distribution from which 
IGO/NOGO was sampled. We set the power (ρ) of the ‘band-
limited white noise’ simulation block to 20 to introduce 
noise on the decision boundary (for further reference, see 
www.mathworks.com/help/simulink/slref/bandlimitedwh
itenoise.html). The strengths of leakage (γ), supra-thresh-
old dissipation (ϕ), and the strength of inhibition (η) were 
optimized to 0.0005, 0.008, and 0.002, respectively. This 
was done by minimizing the difference between the time 
of neural discrimination between alternative rule-states 
(i.e., ‘go’ vs. ‘nogo’) and the time when the difference 
between evidence accumulated by the GO and NOGO units 
exceeded a discrimination threshold (=0.47), in response 
to 10° motion direction. This discrimination threshold was 
calculated from the average normalized differential activ-
ity in two populations of SEF neurons (Fig. 3c). Optimiza-
tion was performed using the ‘Least Square’ method in the 
‘Parameter Estimation’ toolbox for Simulink (MathWorks, 
Inc.) during simulation of a set of 144 trials. The set size 
was equal to the number of data points shown in Fig. 3c.

Results

In our go–nogo ‘ocular baseball’ task, monkeys either 
tracked a moving target with a pursuit eye movement after 
the target intersected a visible square (plate) in ‘strike’ 
trials or maintained fixation if it did not in ‘ball’ tri-
als (Fig. 1a, b). Performances of the animals E and L are 
shown in Fig.  1c, d, respectively. In each recording ses-
sion for motion directions 10°, 20°, 30°, and 40°, monkey 
E was rewarded in on average (±s.e.m) 88.4 (±1.08), 90.7 
(±0.81), 98.5 (±0.26), and 99.9 (±0.05) percent of trials, 
and monkey L was rewarded in on average (±s.e.m) 79.3 
(±2.0), 60.1 (±2.27), 91.8 (±2.71), and 96.7 (±2.06) per-
cent, respectively. A nonparametric Kruskal–Wallis test for 
equal medians of samples in multiple groups showed that 
the proportion of correct trials varied across motion direc-
tions for each animal (P  <  0.001); however, a t test sug-
gested that monkey E’s performance was not different 
between the angles of trajectories in strike trials.

We distinguished two types of neurons in the SEF. One 
population exhibited a higher firing rate when the tar-
get intersected the plate in strike trials relative to when it 
bypassed the plate in ball trials. We refer to these neurons 
as strike neurons. Another population, to which we refer 
as ball neurons, exhibited higher firing rate when the tar-
get bypassed the plate. In this study, we recorded 163 strike 
and 34 ball neurons. Among them, a total of 132 neurons 
(strike: 115, ball: 17) that fulfilled the criterion of having 
significantly differential activity in rewarded trials was con-
sidered for analyses throughout (see “Methods”). Paired t 
test showed that the average (±s.e.m) firing rate of strike 
neurons aligned on the target onset in strike trials was 
41.5 ±  1.5 spikes/s during target motion, which was sig-
nificantly (P < 0.001) higher than the average (±s.e.m) fir-
ing rate of 31.6 ± 1.3 spikes/s in ball trials during the same 
period. Similarly, the average (±s.e.m) firing rate of ball 
neurons in ball trials was 35.9 ±  4.0 spikes/s, which was 
significantly (P < 0.001) higher than the average (±s.e.m) 
firing rate of 30.6 ± 3.6 spikes/s in strike trials.

Activity of representative strike and ball neurons is 
shown, respectively, in Fig. 2a, b for correct strike and ball 
trials. Vertical thick black lines demarcate the times at which 
the differential activity traces, shown by dotted black lines, 
reached a significant level (see “Methods”). Figure  2c, d  
shows the cumulative distributions of the time of differen-
tial activity (solid back) across populations of strike and ball 
neurons, respectively, and the cumulative distributions of 
reaction times (dotted black) across trials in the correspond-
ing sessions. Vertical broken lines show the delays at which 
the target either intersected the vertical leading edge of the 
plate when moved along 10° (blue) or 20° (green) trajecto-
ries in strike trials, or intersected an imaginary extension of 
that when moved along 30° (magenta) or 40° (red) trajecto-
ries in ball trials. Note that the majority of neurons in each 
population exhibited increase in activity before the stimulus 
physically satisfied the condition of the preferred rule-state. 
In 10.6 % go trials, eye movement began either just before 
the target intersected the plate or within the visual latency 
of 80  ms in the SEF after the intersection, with the mean 
(±SD) delay of 47 ± 26 ms. Strike neurons distinguished 
between go and nogo rule-states on average (±s.e.m) 
382 ± 14 ms after the target onset, which was significantly 
(P < 0.001) earlier than the average (±s.e.m) 711 ± 2 ms 
pursuit latency, and ball neurons distinguished between 
rule-states on average (±s.e.m) 430 ± 49 ms following the 
target onset, which was significantly (P < 0.001) earlier than 
the average (±s.e.m) 728 ± 4 ms pursuit latency. Together, 
these results suggested that the SEF distinguished between 
go and nogo rule-states before the corresponding condi-
tion was fulfilled, and in some go trials, the predictive rule 
discrimination resulted in faster eye movements around the 
time when the target intersected the plate.

http://www.mathworks.com/help/simulink/slref/bandlimitedwhitenoise.html
http://www.mathworks.com/help/simulink/slref/bandlimitedwhitenoise.html
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Both populations of neurons initially increased activ-
ity up to an intermediate level irrespective of the motion 
direction, following which they either further increased 
activity for the preferred rule-state or decreased activity for 

the non-preferred rule-state. We sought to know whether 
SEF neurons simply discriminate rule-states by separat-
ing motion directions into two sets, one that satisfies a 
preferred stimulus condition and the other that does not, 

(a) (b)

(c) (d)

(e) (f)

Fig. 3   Spike density functions of the representative strike (a) and 
ball (b) neurons when the target moved along 10° (blue), 20° (green), 
30° (magenta), or 40° (red) trajectories. Discrimination of target tra-
jectories within a rule-state obtained from a ROC analysis for the rep-
resentative strike (c) and ball (d) neurons in (a) and (b). Area under 
the ROC curve (AUC) was calculated by comparing the activity of a 
neuron for two different motion directions specifying the same rule-
state. Line trace shows AUC averaged over 500 resampled sets of 
spike trains. Shaded region indicates standard deviation of the mean. 
Comparison between motion directions in go and nogo rule-states is 
shown by green and red traces, respectively. The selection time and 

the deselection time were calculated when the corresponding average 
AUC significantly (P < 0.05) grew above 0.50 to reach its maximum. 
The strike neuron deselected the antagonist (nogo) rule-state, i.e., dis-
criminated easy (40°) from difficult (30°) ball trials (red arrow), ear-
lier than it selected the agonist (go) rule-state, i.e., discriminated easy 
(10°) from difficult (20°) strike trials (green arrow). Similarly, the 
ball neuron deselected the antagonist (go) rule-state (green arrow), 
earlier than it selected the agonist (nogo) one (red arrow). Cumulative 
distributions of selection and deselection times of agonist and antago-
nist rule-states over the strike (e) and ball (f) neuron populations



466	 Exp Brain Res (2015) 233:459–476

1 3

or distinguish between motion directions within a set as 
well. If the former is the case, the dynamics of modulation 
in the SEF activity for two different motion directions in 
the same rule-state should be the same; and if the latter, the 

two different motion directions within the same rule-state 
should modulate the activity differently. To this end, we 
grouped all correct trials into four mutually exclusive car-
dinal sets. Target trajectories in each set of trials subtended 

(a)

(b)

(c)

(d)

Fig. 4   Neuron–antineuron analysis of rule discrimination that simu-
lates simultaneous recording of all neurons in both strike and ball 
populations. a One or more correct trials were arbitrarily chosen 
from each recording session to construct a set of 1,000 spike trains 
for each type of SEF neuron. Mean spike density functions for strike 
(black) and ball (gray) neurons were normalized separately and aver-
aged over a period of 300 ms prior to the target appearance. b ROC 
analysis to compare distributions of spikes generated by the two 
populations of neurons in response to 10° trajectories. Area under the 
ROC curve (AUC) plotted as a function of time shows the dynam-
ics of the difference between strike and ball activity in response to 
the motion direction. Dotted lines indicate thresholds (0.5  ±  0.1) 
for discrimination. The arrow head denotes the time when the AUC 
reaches a threshold and neurons signal their preferred rule-state. A 

bidirectional arrow in (a) indicates the difference between normal-
ized activity of strike and ball neurons at that time. c Normalized 
differential activity plotted as a function of AUC threshold and the 
time when AUC reached the threshold. The shaded region shows a 
surface fit of data points, which steadily increased with threshold. d 
Normalized average (±s.e.m) spike density functions (left panel) and 
corresponding average (±s.e.m) AUC function (right panel) for 10°, 
20°, 30°, and 40° trajectories are shown from top to bottom in order. 
Linear regression fits are overlaid on spike density functions. Other 
conventions are same as in (a) and (b). Note that rule-state discrimi-
nation occurred earlier in easy trials, and while one type of neurons 
increased activity, other type decreased in a critical period when they 
resolved the rule-state
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the same angle with respect to the horizontal meridian 
irrespective of sign, i.e., 10°, 20°, 30°, and 40°. In strike 
trials, the motion directions (10° and 20°) specify the go 
rule-state, which is the agonist rule-state for strike neurons 
but the antagonist rule-state for ball neurons. In ball tri-
als, the motion directions (30° and 40°) specify the nogo 
rule-state, which is the agonist rule-state for ball neurons 
but the antagonist rule-state for strike neurons. The average 
(±s.e.m) spike density functions across the population of 
strike and ball neurons are shown, respectively, in Fig. 2e, f 
for each cardinal set trajectory.

Paired t tests showed that the average (±s.e.m) firing 
rate (42. 1  ±  1.5 spikes/s) of strike neurons during tar-
get motion along 20° was significantly (P  <  0.05) higher 
than that during motion along 10° (40.9  ±  1.6 spikes/s), 
and the average (±s.e.m) firing rate (32.9 ± 1.4 spikes/s) 
for 30° trajectories was significantly (P  <  0.05) higher 
than that for 40° trajectories (30.3  ±  1.2 spikes/s). The 
same analysis showed that the average (±s.e.m) firing 
rate (32.0 ± 3.9 spikes/s) of ball neurons for 20° trajecto-
ries was significantly (P  <  0.05) higher than that for 10° 
trajectories (29.2  ±  3.4 spikes/s). Although the average 
(±s.e.m) firing rate of ball neurons for 30° trajectories 
(36.5 ± 3.9 spikes/s) was higher than that for 40° trajecto-
ries (35.2 ± 4.2 spikes/s), and the majority (59 %) of ball 
neurons exhibited higher firing rate for 30° trajectories than 
40° trajectories, the difference was not statistically signifi-
cant (P = 0.15). We speculate that ball neurons performed 
poorly in the statistical test due to small sample size.

If indeed SEF neurons distinguish between motion 
directions within a rule-state, not only the average fir-
ing rates, but also the dynamics of modulation of activity 
should also be different for different motion directions. We 
calculated the rate of change in the firing rate of individ-
ual neurons from linear regression fit of the spike density 
function in three consecutive epochs of duration 100, 300, 
and 500 ms starting from 80 ms after target onset, which is 
the visual delay in the SEF (Pouget et al. 2005). Durations 
of epochs were selected based on the observation that the 
activity of both types of neurons increased for first ~200 ms 
after the target onset, following which the agonist activity 
increased for ~300 ms before decreasing subsequently (for 
example, see the representative neurons in Fig. 2a, b). The 
average (±s.e.m) rates of change in firing rate of strike and 
ball neurons are shown, respectively, in Fig. 2g, h.

First, we focus on the second epoch (highlighted), i.e., 
from 180 to 480 ms after target onset, because this is the 
most important epoch in relation to predictive rule discrim-
ination. In this epoch, the average (±s.e.m) rate of increase 
in strike activity for 20° trajectory (36 ± 5 spikes/s2) was 
significantly (P < 0.05) higher than 10° trajectory (26 ± 5 
spikes/s2), and the average (±s.e.m) rate of decrease was 
significantly (P < 0.001) higher for 40° (−32 ± 5 spikes/s2)  

than 30° trajectories (−9 ± 4 spikes/s2). In the same epoch, 
ball neurons increased activity for 40° trajectories at the 
same rate as for 30° ones, but decreased activity for 10° tra-
jectories (−16 ± 6 spikes/s2) significantly (P < 0.05) faster 
than 20° trajectory (5 ± 8 spikes/s2). This result indicates 
that in both populations of neurons, activity decreased at a 
faster rate when the non-preferred rule-state was easier to 
resolve. The rates of increase in activity for motion direc-
tions within the go (i.e., 10° and 20° trajectories) and nogo 
(i.e., 30° and 40° trajectories) rule-states were not statis-
tically different in the first epoch for both types of neu-
rons. In the third epoch, activity of strike neurons for 10° 
(−21 ± 5 spikes/s2) and 30° (−12 ± 2 spikes/s2) trajecto-
ries decreased at significantly (P < 0.001) higher rates than 
20° (−7 ± 5 spikes/s2) and 40° trajectories (−3 ± 2 spikes/
s2), respectively. The rate of decrease in activity of ball 
neurons in this epoch was the same for motion directions 
specifying the go and nogo rule-sates.

We sought to determine why neurons exhibited lower 
activity for trajectories within a rule-state that were far-
ther away from the nearest corner of the plate in the direc-
tion of target motion (Fig. 2e, f). For instance, both strike 
and ball neurons exhibited lower activity when the target 
moved along 10° trajectories than when it moved along 20° 
trajectories. We hypothesized that SEF neurons exhibited 
lower discharge rate when a trajectory was farther from the 
imaginary decision boundary connecting the origin of the 
target and nearest corner of the plate, making the rule-state 
easier to resolve. It would make sense to turn off neurons 
earlier when a rule-state was identified so that the compu-
tational resources could be conserved. We next sought to 
determine whether SEF neurons discriminated easy from 
difficult trials within the same rule-state, and if so, at what 
time the discrimination occurred. To obtain an unbiased 
estimate of the difference in activity for different trajecto-
ries within a rule-state, we used a nonparametric receiver 
operating characteristic (ROC) procedure based on signal 
detection theory (Green and Swets 1966; MacMillan and 
Creelman 1991). Our method was adapted from previ-
ous works using ROC analysis to determine differences in 
neural activity (e.g., Britten et al. 1992; Krauzlis and Dill 
2002; Song and McPeek 2010). We calculated the area 
under the ROC curve (AUC) at each millisecond to derive 
an AUC function. Each neuron yielded two AUC functions, 
one for the go rule-state and another for the nogo rule-state, 
from four sets of trials corresponding to the four motion 
directions (see “Methods”). Three criteria had to be met 
to establish when a neuron first discriminated two motion 
directions within a rule-state: (1) the average AUC grew 
significantly (one-tailed t test, P < 0.05) above the 0.5 level, 
(2) remained significantly above the 0.5 level for at least 
50 ms, and (3) it continued to grow to the maximum with-
out returning at the 0.5 level. We refer to the earliest time 
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of discrimination between motion directions within the pre-
ferred rule-state as the selection time. If the discrimination 
was between motion directions within the non-preferred 
rule-state, we refer to the earliest time of discrimination as 
the deselection time.

Figure  3a, b shows spike density functions of repre-
sentative strike and ball neurons, respectively, for differ-
ent motion directions. Figure 3c, d shows the average AUC 
across 500 iterations plotted as a function of time for the 
same neurons (see “Methods” for the bootstrapping tech-
nique). Green and red traces plot the average AUC func-
tions for a neuron’s activity in difficult trials and were 
compared to that in easy trials within the go and nogo rule-
states, respectively. Shading indicates standard deviations 
of the corresponding AUC functions. The deselection of the 
non-preferred or antagonist (nogo) rule-state and the selec-
tion of the preferred or agonist (go) rule-state by the strike 
neuron in Fig.  3a occurred 297  ms and 336  ms after tar-
get onset, respectively (Fig. 3c). The ball neuron in Fig. 3b 
deselected the antagonist (go) rule-state and selected the 
agonist (nogo) rule-state 318  ms and 465  ms after target 
onset, respectively (Fig. 3d).

Figure 3e, f shows cumulative distributions of selection 
and deselection times in the populations of strike and ball 
neurons. For strike neurons, 110 neurons selected the go 
rule-state and 112 neurons deselected the nogo rule-state. 
The average (±s.e.m) deselection time (399  ±  19  ms) 
across the population was significantly (P < 0.001) earlier 
than the selection time (535 ± 23 ms). For 107 strike neu-
rons that both deselected the nogo rule-state and selected 
the go rule-state, the average (±s.e.m) deselection time 
(400  ±  20  ms) was significantly earlier than the aver-
age (±s.e.m) selection time (534 ±  23 ms) (paired t test, 
P < 0.001). In the population of ball neurons, 15 neurons 
selected the nogo rule-state and 16 neurons deselected 
the go rule-state. The average (±s.e.m) deselection time 
(356 ±  61 ms) across the population of ball neurons was 
significantly (P  <  0.05) earlier than the selection time 
(539  ±  53  ms). However, for 14 ball neurons that both 
deselected the go rule-state and selected the nogo rule-state, 
while the average (±s.e.m) deselection time (377 ± 68 ms) 
was earlier than the selection time (528  ±  55  ms), the 
difference was not statistically significant (paired t test, 
P = 0.058), possibly due to small size of this population.

Note that the animals had to refrain from making an 
ocular pursuit movement until the target intersected the 
plate. Therefore, a neuron could discriminate between go 
and nogo rule-states by merely monitoring whether the tar-
get physically contacted the plate. To rule out this possibil-
ity, we compared the earliest time that a target intersected 
or bypassed the plate with the average selection and dese-
lection times of the population. The earliest time that the 
target met the go criterion was 474 ms, which was the plate 

intersection time of the 10° trajectory. The earliest time that 
the target met the nogo criterion was 539  ms, which was 
the time at which it crossed an imaginary extension of the 
leading vertical edge of the plate when moving along a 30° 
trajectory. These times were much later than the average 
deselection times (go rule-state: 399  ms, nogo rule-state: 
356  ms) (P  <  0.05), but not later than the average selec-
tion times (go rule-state: 534 ms, nogo rule-state: 539 ms). 
These findings suggest that SEF neurons discriminated 
between go and nogo rule-states by predictively decreasing 
activity to deselect the antagonist rule-state.

We asked whether a winner-take-all (WTA) interaction 
between strike and ball neurons in the SEF could account 
for the predictive antagonist rule deselection we observed. 
Under this mechanism, one type of SEF neurons increase 
activity to signal its preferred rule-state, while the other 
type decreases activity to signal that its preferred rule-state 
will not occur. We used a ‘neuron–antineuron’ analysis to 
deduce how the population of strike and ball neurons would 
have responded to a given motion direction if we recorded 
from all sampled neurons in each category simultaneously 
(e.g., Krauzlis and Dill 2002). The analysis was based on 
two sets of spike trains corresponding to strike and ball 
populations of neurons generated by arbitrarily sampling 
at least one trial from each recording session. One or more 
correct trials were chosen randomly from each record-
ing session and used to construct two sets of 1,000 spike 
trains, one corresponding to the population of strike and the 
other corresponding to the population of ball neurons, for 
each motion direction. Spike density functions were com-
puted for each set of spike trains by convolving the aver-
age spike count in every 1-ms bin with a Gaussian kernel 
(σ = 20 ms).

Figure 4a shows the spike density function for the 10° 
trajectory normalized to the average spike density 300 ms 
prior to target onset. Figure  4b shows the AUC function 
obtained from spike density functions in Fig.  4a, indicat-
ing the dynamics of discrimination of the go from the nogo 
rule-states by two populations of SEF neurons. The down 
arrow in Fig. 4b shows that 401 ms after the target onset, 
the AUC reached a critical threshold, which we arbitrar-
ily set at 0.60 for illustration (Krauzlis and Dill 2002), and 
the bidirectional arrow in Fig. 4a shows that the difference 
between normalized strike and ball activity was 0.32 at that 
time. We repeated this ‘neuron–antineuron’ analysis for 
150 AUC threshold values ranging between 0.60 and 0.75 
at an interval of 0.001, and plotted the difference between 
normalized strike and ball activity as a function of both 
time and threshold (Fig. 4c). The steady rise of the surface 
that fits the data derived from this analysis along the z-axis 
(goodness of fit: R2 = 0.9) indicates that two complemen-
tary populations of SEF neurons continued to discriminate 
between go and nogo rule-states between ~200 and 800 ms 
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irrespective of the criterion threshold. The data shown in 
Fig.  4c were used to optimize a computational model of 
decision rule discrimination, which is described in the fol-
lowing paragraph (also see “Methods”).

In order to determine the time of neural discrimination, 
we (1) randomly sampled spike trains from both strike 
and ball neurons to generate two sets of one thousand tri-
als each for a given direction of motion; (2) performed 
ROC analysis (see “Methods”) on these sets of spike trains 
aligned at the target onset and generated an AUC func-
tion; (3) repeated this procedure one hundred times and 
calculated the average AUC; and (4) performed a t test at 
every millisecond to determine whether the average AUC 
at that instant significantly (P < 0.05) increased above (or 
decreased below) 0.5. Subsequently, three criteria had to be 
met to determine the earliest time when two types of the 
SEF neurons discriminated a motion direction: (1) the aver-
age AUC grew (or reduced) significantly (P < 0.05) above 
(or below) the 0.5 level, (2) remained significantly above 
(or below) the 0.5 level for at least 50 ms, and (3) it contin-
ued to grow to the maximum (or reduced to the minimum) 
without returning at the 0.5 level. The spike density func-
tion and the corresponding AUC function for each motion 
direction are shown in Fig. 4d. We also measured the rate 
of change in the normalized average activity of both popu-
lations of neurons from slopes of linear regression fits over 
the 150 ms after the corresponding AUC function reached 
the discrimination threshold (thick straight lines in Fig. 4d). 
Results from this analysis are summarized in Table 1. Note 
that the differential activity exhibited by strike and ball 
neurons occurred earlier in easier trials, and when one type 
of neurons increased activity to select a rule-state, the other 
types of neurons deselected the rule-state by decreasing 
activity.

Given that the complementary activity of strike and ball 
neurons suggests a WTA interaction between these popu-
lations, we designed a computational model consisting of 
a pair of integrators, one subserving the go rule-state and 
the other subserving the nogo rule-state (Fig. 5a, also see 
“Methods”). The integration occurs via a positive feedback 

connection on each unit, and the integrators are coupled by 
mutual inhibition in a WTA fashion (e.g., Roxin and Led-
berg 2008; Oster et al. 2009). On each iteration, the model 
compares the vertical distance between the location of the 
moving target and a noisy representation of the decision 
boundary. In the absence of noise, the decision boundary is 
an imaginary line that connects the target’s initial position 
to the corner of the plate in the direction of target motion 
and remains either above the trajectory in strike trials, or 
below the trajectory in ball trials. The comparison yields a 
‘vote’ of whether the target will bypass (nogo rule-state) or 
intersect (go rule-state) the plate, which enables either the 
NOGO or the GO integrator, respectively, to sample and 
accumulate evidence. At any instant, the integrators dissi-
pate information and inhibit each other with strength pro-
portional to the amount of evidence accumulated up to that 
point in time. We first optimized our model using neural 
data obtained from only the 10° trajectories (Fig. 4c) and 
then simulated 500 trials each for all four cardinal direc-
tions. Figure 5b shows the average (±s.e.m) activity in GO 
(green) and NOGO (red) integrators over the simulated tri-
als for the four cardinal motion trajectories (upper panel) 
and the corresponding AUCs (lower panel). For strike tri-
als, the AUC rose more rapidly from 0.5 for the 10° tra-
jectory than for the 20° trajectory, and in ball trials, it fell 
more rapidly from 0.5 for the 40° trajectory than the 30° 
trajectory, mimicking the AUC functions obtained from the 
neural data (Fig. 4b, d, right column).

The average (±s.e.m) GO (left) and NOGO (right) activ-
ity across 500 simulated trials for each of the four cardi-
nal motion directions is shown in Fig. 6a. We further tested 
whether the model could explain the faster decrease in the 
GO and NOGO activity in easier trials that invoked the 
antagonist rule-state with greater certainty. To this end, we 
measured the rate of change in the output of the accumula-
tors in three consecutive epochs in the same way that we 
measured the rate of change in the neural data, an epoch 
corresponding to the first 200 ms after the target onset, fol-
lowed by subsequent 400 and 600 ms ones. These epochs 
were chosen based on the observation that in the first 
epoch, accumulators do not discriminates rule-states; in 
the second, the difference in the outputs of the accumula-
tors reaches maximum; and in the last, outputs from both 
accumulators decrease. In the second epoch, the critical 
epoch for predictive rule discrimination of the neurons, the 
average (±s.e.m) activity in the GO unit corresponding to 
40° trajectories (−0.42  ±  0.01  s−1) decreased at a faster 
rate than 30° trajectories (−0.05  ±  0.02  s−1)(P  <  0.001) 
(Fig. 6b, left). The average (±s.e.m) activity in the NOGO 
unit corresponding to 10° trajectories decreased at a greater 
rate (−0.32 ± 0.01 s−1) than for the 20° trajectories, which 
increased in rate slightly (0.23  ±  0.01  s−1)(P  <  0.001) 
(Fig.  6b, right). Both GO and NOGO units showed 

Table 1   Neural discrimination time (NDT), i.e., the earliest time 
when strike and ball neurons exhibited complementary activity in 
response to a motion direction, and the rate of change in activity in a 
150-ms window after NDT, for each motion direction

Trajectory (°) NDT (ms) Slope (ms−1)

Strike Ball

10 256 0.0007 −0.0005

20 595 0.0010 −0.0007

30 569 −0.0006 0.0003

40 422 −0.0008 0.0002
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increased activity for the agonist rule-state as did the neu-
rons; however, unlike the neurons, activity of the model 
units rose at different rates for different trajectories invok-
ing the same rule-state. Activity in the GO and NOGO 
units increased in the first epoch and decreased in the last 
epoch for both agonist and antagonist rule-states. However, 
in these epochs, the rate of change in activity in both model 
units statistically differed from the trend observed in neu-
rons’ activity.

Finally, we tested whether the model could account for 
deselection of the antagonist rule-state prior to selection of 
the agonist one. To this end, we randomly sampled a pair of 

trials, one difficult and one easy, which invoked the same 
rule-state. Then, separately for each integrator, we com-
pared the accumulated activity between the two trials over 
time in a 100-ms-wide window sliding at 10-ms interval 
using a one-tailed Wilcoxon rank sum test. When the activ-
ity became significantly different (P < 0.05), and remained 
significantly different for at least 100 consecutive ms, we 
considered that time to be the deselection time for the 
antagonist rule-state and the selection time for the agonist 
rule-state. We repeated the test across 200 pairs of trials in 
each rule-state for both the GO and NOGO units. Figure 6c 
shows the cumulative distributions of deselection and 

(a)

(b)

Fig. 5   a Simulation of the SEF activity during the oculomotor base-
ball task. The model compares the target trajectory with a noisy rep-
resentation of the decision boundary conceptualized by an invisible 
line connecting the target origin with the nearest corner of the plate. 
At each time point, if the comparator determines that the target is 
likely to intersect the plate, it triggers the GO integrator to sample 
evidence from a Gaussian distribution, which is then accumulated in 
favor of a pursuit eye movement. If the comparator determines that 
the target is likely to bypass the plate, it triggers the NOGO integrator 
to sample evidence from the same distribution, which is then accu-
mulated in favor of fixation. Triggering signals are shown as arrays 
of small vertical lines for GO (black) and NOGO (gray) integrators. 

At an instant of time, the integrators dissipate (or leak) information 
and inhibit each other with strength proportional to the evidence gath-
ered up to that point of time. After reaching a fixed threshold, accu-
mulated evidence dissipates rapidly. Time-varying accumulated evi-
dence in the GO (black) and NOGO (gray) units during an example 
strike trial is shown at right. b Black and gray lines show average GO 
and NOGO activity, respectively, for 500 simulated trials (top panel). 
Thin shaded regions show the standard error of the mean activity. 
Areas under the ROC curves (bottom panel) were generated by com-
paring simulated GO and NOGO activity individually for four cardi-
nal directions
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selection times for the antagonist and agonist rule-states, 
respectively, for each unit. The average (±s.e.m) time to 
deselect the nogo rule-state by GO unit (224 ± 13 ms) was 
significantly earlier than that required to select the go rule-
state (523 ± 20 ms) (P < 0.001), and the time to deselect 
the go rule-state by NOGO unit (281 ± 16 ms) was signifi-
cantly earlier than that required to select the nogo rule-state 
(477 ± 18 ms) (P < 0.001).

Discussion

In this study, we present evidence that two complementary 
populations of neurons in the SEF discriminate between go 
and nogo rule-states in our ocular baseball task according 

to how certainly the trajectory of a moving target invokes 
a rule-state. One population of neurons increases activity 
to select the rule-state, while the other decreases activity to 
deselect the rule-state, possibly to increase the difference 
in overall activity between the go and nogo neurons allow-
ing quicker discrimination between rule-states. This rapid 
decrease in activity might also serve to eliminate from fur-
ther processing trajectories that would not be candidates for 
the behavior corresponding to the preferred rule-state. The 
main findings of this study are (1) SEF neurons deselect the 
non-preferred/antagonist rule-state before they select the 
preferred/agonist one, (2) the activity within the antagonist 
rule-state drops more rapidly for the trajectory that invokes 
the rule-state with more certainty. A computational model 
using a pair of integrators—one that accumulates evidence 

Fig. 6   a Average (±s.e.m) GO 
(left) and NOGO (right) activity 
during 500 simulated trials for 
each of the four target motion 
angles. b Average (±s.e.m) 
rate of change in GO (left) and 
NOGO (right) activity across 
all simulated trials is compared 
in three consecutive epochs 
(compare with Fig. 2g, h). c 
Cumulative distributions of 
time when GO (left) and NOGO 
(right) accumulators discrimi-
nated between motion directions 
specifying the agonist rule-state 
(selection time) and the antago-
nist rule-state (deselection time) 
(compare with Fig. 3e, f). The 
GO unit deselected the nogo 
rule-state (gray) before select-
ing the go rule-state (black), 
and the NOGO unit deselected 
the go rule-state (black) before 
selecting the nogo rule-state 
(gray)

(a)

(b)

(c)
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in favor of pursuit and another that accumulates evidence in 
favor of fixation—accounts for the physiological phenom-
ena observed in the SEF.

There is physiological evidence that SEF neurons con-
tribute to smooth pursuit eye movement generation (Heinen 
1995; Tian and Lynch 1995; Missal and Heinen 2001; 
Fukushima et  al. 2004, 2011) and decision making (Coe 
et al. 2002; So and Stuphorn 2010). Neurons here not only 
signal an upcoming pursuit eye movement in a predictive 
fashion (Heinen and Liu 1997; de Hemptinne et al. 2008) 
but also contribute to the animal’s choice—either to pursue 
or to maintain fixation (Kim et al. 2005; Shichinohe et al. 
2009). However, SEF activity reflects the decision rule, and 
not the final decision, as SEF neurons continue to discrimi-
nate rule-states correctly even when the animal’s behavio-
ral choice does not comply with the rule-state (Yang et al. 
2010; Heinen et  al. 2011). The results from the present 
study complement these previous findings by suggesting 
a plausible neural mechanism for discriminating decision 
rule-states in the SEF and provide a computational frame-
work supporting this mechanism.

Results from previous studies provide hints that reject-
ing irrelevant or non-rewarded stimuli or behaviors might 
be important for choosing between alternative actions. 
Concurrent activation of neural populations that encode 
multiple motor plans (Cisek and Kalaska 2010; Klaes et al. 
2011) requires an ‘inhibition-for-deselection’ mechanism 
to resolve the competition (Cisek 2006, 2007, but also see 
Duque and Ivry 2009). Moreover, in many regions of the 
brain, activity is attenuated to signal anti-preferences in 
tasks that require selection of an action from alternatives 
(Motter 1994; Recanzone et al. 1997; Roitman and Shadlen 
2002; Sato and Schall 2003; Hasegawa et al. 2004; Cisek 
and Kalaska 2005; Khayat et  al. 2006; McPeek 2006; 
Bodis-Wollner 2008; Ding and Gold 2010; Hanks et  al. 
2011). For example, visually responsive neurons in the 
frontal eye field (FEF) decrease activity to deselect a tar-
get when it leaves their receptive fields in order to facili-
tate redirection of the end point of a saccade to the final 
location of the target (Murthy et al. 2009). Deselection also 
seems to be critical in ensuring that the effector of a move-
ment is unambiguous, specifying between hands (Koch 
et al. 2006), or between eye and hand (Cui and Andersen 
2007).

In the ocular baseball task, a decision criterion separates 
different motion directions into two groups, which results 
in the activation of two corresponding populations of neu-
rons. Complementary populations of neurons have also 
been observed in other regions of the brain that are involved 
in categorical decision making. In a paradigm where alter-
native actions are chosen based on tactile information, two 
sets of neurons have been identified in both the medial pre-
motor cortex (MPC) and primary motor cortex (M1) that 

segregate stimuli into ‘faster’ and ‘slower’ speed categories 
by either increasing or decreasing their activity between 
two levels (Romo et  al. 1997; Salinas and Romo 1998). 
Additionally, two populations of neurons in the prefrontal 
and parietal cortices reflect feature-based categorization of 
visual stimuli (Freedman et  al. 2001; Cromer et  al. 2010; 
Roy et  al. 2010; Freedman and Assad 2006). Recently, 
complementary populations of neurons in the FEF have 
been identified that exhibit a preference for ‘higher’ or 
‘lower’ speeds of visual motion (Ferrera et al. 2009). Neu-
rons in the superior colliculus (SC) have also been shown 
to categorize the direction of coherent moving dots to plan 
a forthcoming saccade (Horwitz et al. 2004).

We think that the SEF lies beyond regions that merely 
categorize sensory stimuli in the neural cascade. Rather, 
this area appears to interpret the rule of our task and serves 
as a link between areas that categorize sensory motion and 
those that execute the behavioral choice. Anatomically, the 
SEF is situated well for this as it receives input from the 
medial superior temporal (MST) area (Huerta and Kaas 
1990), which has neurons that are tuned to the speed and 
direction of visual motion (Tanaka and Saito 1989; Orban 
et  al. 1995; Duffy and Wurtz 1997a, b), and projects to 
brain areas that contribute more directly to the execution 
of pursuit eye movements, like the FEF (Keating 1991; 
Gottlieb et al. 1994; Tanaka and Fukushima 1998; Tanaka 
and Lisberger 2002), the SC (Krauzlis et al. 2000; Krauz-
lis 2001), and pontine nuclei in the brainstem (Shook et al. 
1990; Suzuki et al. 2003; Dicke et al. 2004; Leichnetz et al. 
1984). The presence of a relatively large number of ‘go’ 
neurons in the SEF may be intended to drive a variety of 
motor neurons in downstream areas, and plan pursuit eye 
movements with numerous kinematic attributes, while the 
fewer ‘nogo’ neurons may be adequate to suppress activ-
ity of those neurons and hold the gaze at the fixation point. 
We did not find a systematic pattern of spatial distribution 
of the two types of neurons. However, multiple neurons of 
one type often appeared along a track of penetration. Previ-
ous studies have also reported small samples of neurons in 
the SEF that had higher activity during fixation compared 
to neurons that had higher activity during smooth pursuit 
(Kim et al. 2005; Fukushima et al. 2004; Shichinohe et al. 
2009). In fact, a recent study has shown a biased proportion 
of pursuit and fixation-related neurons in both the SEF and 
FEF (Fukushima et al. 2011).

Sequential sampling models account for neural activity 
and behavior in perceptual decision-making tasks (Smith 
and Ratcliff 2004; Ditterich 2010). These models employ 
separate integrators that accumulate evidence in favor 
of each alternative. When the evidence in an integrator 
reaches a threshold, the appropriate movement is triggered 
(reviewed in Gold and Shadlen 2007; Deco et  al. 2012; 
Zhang 2012). A buildup of neuronal activity in the lateral 
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intra-parietal area (LIP), FEF, and SC is thought to underlie 
the evolving perceptual decision and saccade preparation 
that occurs during the task (Horwitz and Newsome 1999; 
Kim and Shadlen 1999; Shadlen and Newsome 2001; Ben-
nur and Gold 2011; Ding and Gold 2011; Ratcliff et  al. 
2003, 2007; Gold and Shadlen 2003). Sequential sampling 
models have largely been applied to the results obtained in 
two-alternative forced-choice tasks. In these tasks, the ani-
mals must discriminate the net direction of moving dots, 
and signal their perceptual decision, for example, by mak-
ing a saccade to one of two targets (e.g., Newsome and Paré 
1988; Salzman et al. 1990; Feng et al. 2009). In sequential 
sampling models applied to these tasks, different direction-
ally tuned neurons in the medial temporal (MT) area are 
represented by separate distributions of neural activity that 
is integrated over time. A saccade is generated in the cor-
responding direction when one of the competing integrators 
(hypothesized to exist in the LIP) gathers enough sensory 
evidence from MT neurons to rise above a pre-assigned 
threshold (Mazurek et al. 2003). A variant of the sequential 
sampling model, the leaky competitive accumulator (LCA) 
model, incorporates mutual inhibition between a pair of 
leaky integrators to simulate the performance and neural 
activity in decision-making tasks (Usher and McClelland 
2001; Mcmillen and Holmes 2006; Bogacz et al. 2007).

In order to model our SEF data, we considered that 
unlike in the LIP (Roitman and Shadlen 2002), the FEF 
(Hanes and Schall 1996), or the SC (Munoz and Wurtz 
1995; Jantz et al. 2013), neurons in the SEF do not increase 
activity to a threshold at the time when an eye movement 
is generated. Additionally, directional tuning of neurons 
neither in the SEF (Yang et al. 2010) nor in the areas that 
are richly connected to the SEF in relation to ocular pur-
suit, for example, the FEF (Huerta and Kaas 1990; Ono and 
Mustari 2009), the parietal area 7a (Bremmer et al. 1997; 
Sakata et al. 1983), and the dorsal part of the middle supe-
rior temporal area (Ono and Mustari 2006), is as prominent 
as in MT (Maunsell and Van Essen 1983a, b; Orban 2008). 
Our model was inspired by the LCA model, but is different 
from that model in several important ways such as: (1) it 
does not assume a ceiling value of activity (i.e., threshold) 
in order to make a decision, (2) the GO and NOGO integra-
tors in our model sample sensory evidence from the same 
distribution, and (3) either the GO or NOGO integrators 
accumulate evidence at a given instant of time in anticipa-
tion of whether the motion direction will signal the rule-
state for ocular pursuit or fixation, respectively.

Biophysically, realistic models that describe how deci-
sions are made between two alternative actions also incor-
porate WTA circuitry (Wang 2002; Lo and Wang 2006; 
Albantakis and Deco 2011). For example, models consist-
ing of interactive populations of integrate-and-fire neurons 
have been proposed to categorize tactile stimuli (Machens 

et  al. 2005) and to make flexible visuomotor associations 
(Loh and Deco 2005). Mutual inhibition between a pair 
of integrators has been shown to be critical for preserv-
ing the order of saccade execution in a sequence (Ray 
et al. 2012) and for optimizing visual search performance 
(Purcell et  al. 2012). More relevant to our study, a model 
with two mutually inhibited accumulators has been intro-
duced as a ‘linking proposition’ (Teller 1984; Schall 2004), 
which describes the activity of movement neurons in the 
FEF during countermanding (Boucher et al. 2007). In this 
interactive race model, two stochastic processes (GO and 
STOP) compete to rise to a threshold to signal that a sac-
cade should be either generated or withheld, respectively. 
Because of the sequential nature of GO and STOP signal 
initiation in this model, to withhold a saccade, the inhibi-
tion exerted on the GO signal by the STOP signal must be 
strong enough to cease the growth of the GO signal shortly 
after the STOP signal begins to rise.

Similar to the race model of saccade generation, our 
model incorporates a pair of GO and NOGO integrators, 
which for our model represent populations of strike and 
ball neurons in the SEF. Each integrator differentially accu-
mulates evidence by recurrent self-excitation, and the inte-
grators are coupled by mutual inhibition. The inhibitory 
coupling of the integrators was motivated by the observa-
tion that when the activity of strike neurons rises to spec-
ify a rule-state, the activity of ball neurons falls, and vice 
versa. A rule-state is discriminated when the differential 
activity between the two integrators reaches a predeter-
mined value. Although the model does not embody a spe-
cific anatomical architecture, or account for the disparity in 
the numbers of strike and ball neurons, the simulations we 
conducted with it captured two essential elements of SEF 
activity during discrimination of the go/nogo rule-states: 
(1) the antagonist rule-state is deselected before the ago-
nist rule-state is selected, and (2) deselection occurs more 
rapidly when motion direction invokes the antagonist rule-
state more certainly. Since we did not record activity from 
strike and ball neurons simultaneously, we had no means to 
directly set the ratio of strengths with which an integrator 
representing one population of neurons inhibited another 
in the model. Therefore, we preferred to set the strength of 
mutual inhibition, along with other constant parameters of 
the model including leakage and supra-threshold dissipa-
tion, identical for both integrators. However, we cannot rule 
out the possibility of different weights for inhibition for go 
and nogo integrators, given the disparity in the number of 
neurons mentioned above. Mutual inhibition, which sug-
gests that higher activity in one population results in greater 
suppression of activity in the other, and vice versa, might 
seem improbable at first glance, since the neural activity in 
difficult trials (20° and 30° trajectories) is higher than that 
in easy trials (10° and 40° trajectories) in both populations 
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of neurons. But a close inspection of the model dynamics 
shows that the net accumulated evidence by one integra-
tor depends not only on inhibition by the other, but also on 
how long the integrator continues to accumulate evidence 
in favor of its preferred rule-state. For example, the NOGO 
integrator accumulates evidence for the nogo rule-state, and 
the GO integrator accumulates evidence for go rule-state 
longer for 20° trajectories than 10° trajectories because 
20° trajectories pass through the noisy decision boundary 
longer than 10° trajectories. The same argument holds true 
for 30° and 40° trajectories.

Because the decision boundary that divides motion 
directions into the two categories that specify pursuit and 
fixation does not physically exist in the stimulus display, 
it must be constructed mentally. Therefore, we assumed 
a noisy representation of the boundary for the model. 
Although, to the best of our knowledge, there is no reported 
evidence of neurons encoding the relative distance of a 
moving object, recent studies show that prefrontal (BA 46 
and 8) neurons compare and discriminate relative distances 
of static objects (Genovesio et  al. 2011). This finding to 
some extent lends support to our assumption that either the 
GO or NOGO integrator can be enabled at a given instant 
during simulation based on the distance of the target from 
the decision boundary. Thus, our model describes a plausi-
ble mechanism that can discriminate motion directions fol-
lowing a criterion in order to decide between ocular pursuit 
and fixation.
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